Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma
Abstract Background Radiomics may provide more objective and accurate predictions for extrahepatic cholangiocarcinoma (ECC). In this study, we developed radiomics models based on magnetic resonance imaging (MRI) and machine learning to preoperatively predict differentiation degree (DD) and lymph nod...
Guardado en:
Autores principales: | Yong Tang, Chun Mei Yang, Song Su, Wei Jia Wang, Li Ping Fan, Jian Shu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/309d9f06a3ee411cb16d6d91171a985d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer
por: Yadi Zhu, et al.
Publicado: (2021) -
Clinical Value of Machine Learning-Based Ultrasomics in Preoperative Differentiation Between Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: A Multicenter Study
por: Shanshan Ren, et al.
Publicado: (2021) -
A Novel Clinical-Radiomics Model Based on Sarcopenia and Radiomics for Predicting the Prognosis of Intrahepatic Cholangiocarcinoma After Radical Hepatectomy
por: Liming Deng, et al.
Publicado: (2021) -
Radiomics Analysis of Contrast-Enhanced CT for the Preoperative Prediction of Microvascular Invasion in Mass-Forming Intrahepatic Cholangiocarcinoma
por: Fei Xiang, et al.
Publicado: (2021) -
Extrahepatic metastases of hepatocellular carcinoma on 18F FDG PET CT
por: Manjit Sarma, et al.
Publicado: (2021)