Computational challenges and opportunities in spatially resolved transcriptomic data analysis

Spatially resolved transcriptomic data demand new computational analysis methods to derive biological insights. Here, we comment on these associated computational challenges as well as highlight the opportunities for standardized benchmarking metrics and data-sharing infrastructure in spurring innov...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lyla Atta, Jean Fan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/30b39018bedf4a9f9b290b200f3c9857
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:30b39018bedf4a9f9b290b200f3c9857
record_format dspace
spelling oai:doaj.org-article:30b39018bedf4a9f9b290b200f3c98572021-12-02T17:41:08ZComputational challenges and opportunities in spatially resolved transcriptomic data analysis10.1038/s41467-021-25557-92041-1723https://doaj.org/article/30b39018bedf4a9f9b290b200f3c98572021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25557-9https://doaj.org/toc/2041-1723Spatially resolved transcriptomic data demand new computational analysis methods to derive biological insights. Here, we comment on these associated computational challenges as well as highlight the opportunities for standardized benchmarking metrics and data-sharing infrastructure in spurring innovation moving forward.Lyla AttaJean FanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-5 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Lyla Atta
Jean Fan
Computational challenges and opportunities in spatially resolved transcriptomic data analysis
description Spatially resolved transcriptomic data demand new computational analysis methods to derive biological insights. Here, we comment on these associated computational challenges as well as highlight the opportunities for standardized benchmarking metrics and data-sharing infrastructure in spurring innovation moving forward.
format article
author Lyla Atta
Jean Fan
author_facet Lyla Atta
Jean Fan
author_sort Lyla Atta
title Computational challenges and opportunities in spatially resolved transcriptomic data analysis
title_short Computational challenges and opportunities in spatially resolved transcriptomic data analysis
title_full Computational challenges and opportunities in spatially resolved transcriptomic data analysis
title_fullStr Computational challenges and opportunities in spatially resolved transcriptomic data analysis
title_full_unstemmed Computational challenges and opportunities in spatially resolved transcriptomic data analysis
title_sort computational challenges and opportunities in spatially resolved transcriptomic data analysis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/30b39018bedf4a9f9b290b200f3c9857
work_keys_str_mv AT lylaatta computationalchallengesandopportunitiesinspatiallyresolvedtranscriptomicdataanalysis
AT jeanfan computationalchallengesandopportunitiesinspatiallyresolvedtranscriptomicdataanalysis
_version_ 1718379696109912064