Computational challenges and opportunities in spatially resolved transcriptomic data analysis
Spatially resolved transcriptomic data demand new computational analysis methods to derive biological insights. Here, we comment on these associated computational challenges as well as highlight the opportunities for standardized benchmarking metrics and data-sharing infrastructure in spurring innov...
Guardado en:
Autores principales: | Lyla Atta, Jean Fan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30b39018bedf4a9f9b290b200f3c9857 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
por: Ben D. Fulcher, et al.
Publicado: (2021) -
Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface
por: Miranda V. Hunter, et al.
Publicado: (2021) -
European Land Use Spatial Data Sources and Their Role in Integrated Planning: Opportunities and Challenges for Poland
por: Beata Stelmach-Fita
Publicado: (2021) -
Correction to: The challenges of modern computing and new opportunities for optics
por: Chong Li, et al.
Publicado: (2021) -
Coming of age: Challenges and opportunities for computers in human behavior reports
por: Matthieu J. Guitton
Publicado: (2021)