Computational challenges and opportunities in spatially resolved transcriptomic data analysis
Spatially resolved transcriptomic data demand new computational analysis methods to derive biological insights. Here, we comment on these associated computational challenges as well as highlight the opportunities for standardized benchmarking metrics and data-sharing infrastructure in spurring innov...
Enregistré dans:
Auteurs principaux: | Lyla Atta, Jean Fan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/30b39018bedf4a9f9b290b200f3c9857 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
par: Ben D. Fulcher, et autres
Publié: (2021) -
Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface
par: Miranda V. Hunter, et autres
Publié: (2021) -
European Land Use Spatial Data Sources and Their Role in Integrated Planning: Opportunities and Challenges for Poland
par: Beata Stelmach-Fita
Publié: (2021) -
Correction to: The challenges of modern computing and new opportunities for optics
par: Chong Li, et autres
Publié: (2021) -
Coming of age: Challenges and opportunities for computers in human behavior reports
par: Matthieu J. Guitton
Publié: (2021)