Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of <named-content content-type="genus-species">Corynebacterium glutamicum</named-content> as a Model

ABSTRACT Lsr2-like nucleoid-associated proteins play an important role as xenogeneic silencers (XS) of horizontally acquired genomic regions in actinobacteria. In this study, we systematically analyzed the in vivo constraints underlying silencing and counter-silencing of the Lsr2-like protein CgpS i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Johanna Wiechert, Andrei Filipchyk, Max Hünnefeld, Cornelia Gätgens, Jannis Brehm, Ralf Heermann, Julia Frunzke
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/30c88609c7574dc3a1cde05ab12e5165
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:30c88609c7574dc3a1cde05ab12e5165
record_format dspace
spelling oai:doaj.org-article:30c88609c7574dc3a1cde05ab12e51652021-11-15T15:56:58ZDeciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of <named-content content-type="genus-species">Corynebacterium glutamicum</named-content> as a Model10.1128/mBio.02273-192150-7511https://doaj.org/article/30c88609c7574dc3a1cde05ab12e51652020-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02273-19https://doaj.org/toc/2150-7511ABSTRACT Lsr2-like nucleoid-associated proteins play an important role as xenogeneic silencers (XS) of horizontally acquired genomic regions in actinobacteria. In this study, we systematically analyzed the in vivo constraints underlying silencing and counter-silencing of the Lsr2-like protein CgpS in Corynebacterium glutamicum. Genome-wide analysis revealed binding of CgpS to regions featuring a distinct drop in GC profile close to the transcription start site (TSS) but also identified an overrepresented motif with multiple A/T steps at the nucleation site of the nucleoprotein complex. Binding of specific transcription factors (TFs) may oppose XS activity, leading to counter-silencing. Following a synthetic counter-silencing approach, target gene activation was realized by inserting operator sites of an effector-responsive TF within various CgpS target promoters, resulting in increased promoter activity upon TF binding. Analysis of reporter constructs revealed maximal counter-silencing when the TF operator site was inserted at the position of maximal CgpS coverage. This principle was implemented in a synthetic toggle switch, which features a robust and reversible response to effector availability, highlighting the potential for biotechnological applications. Together, our results provide comprehensive insights into how Lsr2 silencing and counter-silencing shape evolutionary network expansion in this medically and biotechnologically relevant bacterial phylum. IMPORTANCE In actinobacteria, Lsr2-like nucleoid-associated proteins function as xenogeneic silencers (XS) of horizontally acquired genomic regions, including viral elements, virulence gene clusters in Mycobacterium tuberculosis, and genes involved in cryptic specialized metabolism in Streptomyces species. Consequently, a detailed mechanistic understanding of Lsr2 binding in vivo is relevant as a potential drug target and for the identification of novel bioactive compounds. Here, we followed an in vivo approach to investigate the rules underlying xenogeneic silencing and counter-silencing of the Lsr2-like XS CgpS from Corynebacterium glutamicum. Our results demonstrated that CgpS distinguishes between self and foreign by recognizing a distinct drop in GC profile in combination with a short, sequence-specific motif at the nucleation site. Following a synthetic counter-silencer approach, we studied the potential and constraints of transcription factors to counteract CgpS silencing, thereby facilitating the integration of new genetic traits into host regulatory networks.Johanna WiechertAndrei FilipchykMax HünnefeldCornelia GätgensJannis BrehmRalf HeermannJulia FrunzkeAmerican Society for MicrobiologyarticleAT-rich DNALsr2actinobacteriacounter-silencinghorizontal gene transferregulatory networksMicrobiologyQR1-502ENmBio, Vol 11, Iss 1 (2020)
institution DOAJ
collection DOAJ
language EN
topic AT-rich DNA
Lsr2
actinobacteria
counter-silencing
horizontal gene transfer
regulatory networks
Microbiology
QR1-502
spellingShingle AT-rich DNA
Lsr2
actinobacteria
counter-silencing
horizontal gene transfer
regulatory networks
Microbiology
QR1-502
Johanna Wiechert
Andrei Filipchyk
Max Hünnefeld
Cornelia Gätgens
Jannis Brehm
Ralf Heermann
Julia Frunzke
Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of <named-content content-type="genus-species">Corynebacterium glutamicum</named-content> as a Model
description ABSTRACT Lsr2-like nucleoid-associated proteins play an important role as xenogeneic silencers (XS) of horizontally acquired genomic regions in actinobacteria. In this study, we systematically analyzed the in vivo constraints underlying silencing and counter-silencing of the Lsr2-like protein CgpS in Corynebacterium glutamicum. Genome-wide analysis revealed binding of CgpS to regions featuring a distinct drop in GC profile close to the transcription start site (TSS) but also identified an overrepresented motif with multiple A/T steps at the nucleation site of the nucleoprotein complex. Binding of specific transcription factors (TFs) may oppose XS activity, leading to counter-silencing. Following a synthetic counter-silencing approach, target gene activation was realized by inserting operator sites of an effector-responsive TF within various CgpS target promoters, resulting in increased promoter activity upon TF binding. Analysis of reporter constructs revealed maximal counter-silencing when the TF operator site was inserted at the position of maximal CgpS coverage. This principle was implemented in a synthetic toggle switch, which features a robust and reversible response to effector availability, highlighting the potential for biotechnological applications. Together, our results provide comprehensive insights into how Lsr2 silencing and counter-silencing shape evolutionary network expansion in this medically and biotechnologically relevant bacterial phylum. IMPORTANCE In actinobacteria, Lsr2-like nucleoid-associated proteins function as xenogeneic silencers (XS) of horizontally acquired genomic regions, including viral elements, virulence gene clusters in Mycobacterium tuberculosis, and genes involved in cryptic specialized metabolism in Streptomyces species. Consequently, a detailed mechanistic understanding of Lsr2 binding in vivo is relevant as a potential drug target and for the identification of novel bioactive compounds. Here, we followed an in vivo approach to investigate the rules underlying xenogeneic silencing and counter-silencing of the Lsr2-like XS CgpS from Corynebacterium glutamicum. Our results demonstrated that CgpS distinguishes between self and foreign by recognizing a distinct drop in GC profile in combination with a short, sequence-specific motif at the nucleation site. Following a synthetic counter-silencer approach, we studied the potential and constraints of transcription factors to counteract CgpS silencing, thereby facilitating the integration of new genetic traits into host regulatory networks.
format article
author Johanna Wiechert
Andrei Filipchyk
Max Hünnefeld
Cornelia Gätgens
Jannis Brehm
Ralf Heermann
Julia Frunzke
author_facet Johanna Wiechert
Andrei Filipchyk
Max Hünnefeld
Cornelia Gätgens
Jannis Brehm
Ralf Heermann
Julia Frunzke
author_sort Johanna Wiechert
title Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of <named-content content-type="genus-species">Corynebacterium glutamicum</named-content> as a Model
title_short Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of <named-content content-type="genus-species">Corynebacterium glutamicum</named-content> as a Model
title_full Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of <named-content content-type="genus-species">Corynebacterium glutamicum</named-content> as a Model
title_fullStr Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of <named-content content-type="genus-species">Corynebacterium glutamicum</named-content> as a Model
title_full_unstemmed Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of <named-content content-type="genus-species">Corynebacterium glutamicum</named-content> as a Model
title_sort deciphering the rules underlying xenogeneic silencing and counter-silencing of lsr2-like proteins using cgps of <named-content content-type="genus-species">corynebacterium glutamicum</named-content> as a model
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/30c88609c7574dc3a1cde05ab12e5165
work_keys_str_mv AT johannawiechert decipheringtherulesunderlyingxenogeneicsilencingandcountersilencingoflsr2likeproteinsusingcgpsofnamedcontentcontenttypegenusspeciescorynebacteriumglutamicumnamedcontentasamodel
AT andreifilipchyk decipheringtherulesunderlyingxenogeneicsilencingandcountersilencingoflsr2likeproteinsusingcgpsofnamedcontentcontenttypegenusspeciescorynebacteriumglutamicumnamedcontentasamodel
AT maxhunnefeld decipheringtherulesunderlyingxenogeneicsilencingandcountersilencingoflsr2likeproteinsusingcgpsofnamedcontentcontenttypegenusspeciescorynebacteriumglutamicumnamedcontentasamodel
AT corneliagatgens decipheringtherulesunderlyingxenogeneicsilencingandcountersilencingoflsr2likeproteinsusingcgpsofnamedcontentcontenttypegenusspeciescorynebacteriumglutamicumnamedcontentasamodel
AT jannisbrehm decipheringtherulesunderlyingxenogeneicsilencingandcountersilencingoflsr2likeproteinsusingcgpsofnamedcontentcontenttypegenusspeciescorynebacteriumglutamicumnamedcontentasamodel
AT ralfheermann decipheringtherulesunderlyingxenogeneicsilencingandcountersilencingoflsr2likeproteinsusingcgpsofnamedcontentcontenttypegenusspeciescorynebacteriumglutamicumnamedcontentasamodel
AT juliafrunzke decipheringtherulesunderlyingxenogeneicsilencingandcountersilencingoflsr2likeproteinsusingcgpsofnamedcontentcontenttypegenusspeciescorynebacteriumglutamicumnamedcontentasamodel
_version_ 1718427078375768064