An ensemble framework based on Deep CNNs architecture for glaucoma classification using fundus photography

Glaucoma is a chronic ocular degenerative disease that can cause blindness if left untreated in its early stages. Deep Convolutional Neural Networks (Deep CNNs) and its variants have provided superior performance in glaucoma classification, segmentation, and detection. In this paper, we propose a tw...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Aziz-ur-Rehman, Imtiaz A. Taj, Muhammad Sajid, Khasan S. Karimov
Format: article
Langue:EN
Publié: AIMS Press 2021
Sujets:
Accès en ligne:https://doaj.org/article/30cda7b95ecb4736abc05e3f7d820abd
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Glaucoma is a chronic ocular degenerative disease that can cause blindness if left untreated in its early stages. Deep Convolutional Neural Networks (Deep CNNs) and its variants have provided superior performance in glaucoma classification, segmentation, and detection. In this paper, we propose a two-staged glaucoma classification scheme based on Deep CNN architectures. In stage one, four different ImageNet pre-trained Deep CNN architectures, i.e., AlexNet, InceptionV3, InceptionResNetV2, and NasNet-Large are used and it is observed that NasNet-Large architecture provides superior performance in terms of sensitivity (99.1%), specificity (99.4%), accuracy (99.3%), and area under the receiver operating characteristic curve (97.8%) metrics. A detailed performance comparison is also presented among these on public datasets, i.e., ACRIMA, ORIGA-Light, and RIM-ONE as well as locally available datasets, i.e., AFIO, and HMC. In the second stage, we propose an ensemble classifier with two novel ensembling techniques, i.e., accuracy based weighted voting, and accuracy/score based weighted averaging to further improve the glaucoma classification results. It is shown that ensemble with accuracy/score based scheme improves the accuracy (99.5%) for diverse databases. As an outcome of this study, it is presented that the NasNet-Large architecture is a feasible option in terms of its performance as a single classifier while ensemble classifier further improves the generalized performance for automatic glaucoma classification.