Generating quantitative binding landscapes through fractional binding selections combined with deep sequencing and data normalization
Quantifying the effect of mutations on binding free energy is important to understand protein-protein interaction (PPI). Here the authors develop a method based on yeast display and next-generation sequencing to generate quantitative binding landscapes for any PPI regardless of their Kd value.
Guardado en:
Autores principales: | Michael Heyne, Niv Papo, Julia M. Shifman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30d06668541b438abf2226ef9ab7a880 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mapping protein selectivity landscapes using multi-target selective screening and next-generation sequencing of combinatorial libraries
por: Si Naftaly, et al.
Publicado: (2018) -
A KLK4 proteinase substrate capture approach to antagonize PAR1
por: Eitan Rabinovitch, et al.
Publicado: (2021) -
Inferring binding energies from selected binding sites.
por: Yue Zhao, et al.
Publicado: (2009) -
Quantifying the binding landscapes of protein–protein interactions
por: Andrew J. Bissette
Publicado: (2021) -
Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan.
por: Morten Nielsen, et al.
Publicado: (2008)