Anomaly Detection in Automotive Industry Using Clustering Methods—A Case Study
In automotive industries, pricing anomalies may occur for components of different products, despite their similar physical characteristics, which raises the total production cost of the company. However, detecting such discrepancies is often neglected since it is necessary to find the problems consi...
Guardado en:
Autores principales: | Marcio Trindade Guerreiro, Eliana Maria Andriani Guerreiro, Tathiana Mikamura Barchi, Juliana Biluca, Thiago Antonini Alves, Yara de Souza Tadano, Flávio Trojan, Hugo Valadares Siqueira |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30d640b41c84415d99418377441764ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Algorithm optimization and anomaly detection simulation based on extended Jarvis-Patrick clustering and outlier detection
por: Wei Wang, et al.
Publicado: (2022) -
A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring
por: Corbinian Nentwich, et al.
Publicado: (2021) -
Anomaly Detection on Data Streams for Smart Agriculture
por: Juliet Chebet Moso, et al.
Publicado: (2021) -
An Efficient and Robust Framework for Hyperspectral Anomaly Detection
por: Linbo Tang, et al.
Publicado: (2021) -
An Approach to Detect Anomaly in Video Using Deep Generative Network
por: Savath Saypadith, et al.
Publicado: (2021)