A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder
Abstract Dimensionality reduction is crucial for the visualization and interpretation of the high-dimensional single-cell RNA sequencing (scRNA-seq) data. However, preserving topological structure among cells to low dimensional space remains a challenge. Here, we present the single-cell graph autoen...
Guardado en:
Autores principales: | Zixiang Luo, Chenyu Xu, Zhen Zhang, Wenfei Jin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30dec251c0cd4590a65a1c8076f91bcf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Privacy-Preserving High-dimensional Data Collection with Federated Generative Autoencoder
por: Jiang Xue, et al.
Publicado: (2022) -
Ensemble dimensionality reduction and feature gene extraction for single-cell RNA-seq data
por: Xiaoxiao Sun, et al.
Publicado: (2020) -
Single-cell RNA-seq denoising using a deep count autoencoder
por: Gökcen Eraslan, et al.
Publicado: (2019) -
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
por: Emmanuel Pintelas, et al.
Publicado: (2021) -
Adversarial Attention-Based Variational Graph Autoencoder
por: Ziqiang Weng, et al.
Publicado: (2020)