A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder

Abstract Dimensionality reduction is crucial for the visualization and interpretation of the high-dimensional single-cell RNA sequencing (scRNA-seq) data. However, preserving topological structure among cells to low dimensional space remains a challenge. Here, we present the single-cell graph autoen...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Zixiang Luo, Chenyu Xu, Zhen Zhang, Wenfei Jin
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/30dec251c0cd4590a65a1c8076f91bcf
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!