Assessment of the impact of shared brain imaging data on the scientific literature
Data sharing is recognized as a way to promote scientific collaboration and reproducibility, but some are concerned over whether research based on shared data can achieve high impact. Here, the authors show that neuroimaging papers using shared data are no less likely to appear in top-ranked journal...
Guardado en:
Autores principales: | Michael P. Milham, R. Cameron Craddock, Jake J. Son, Michael Fleischmann, Jon Clucas, Helen Xu, Bonhwang Koo, Anirudh Krishnakumar, Bharat B. Biswal, F. Xavier Castellanos, Stan Colcombe, Adriana Di Martino, Xi-Nian Zuo, Arno Klein |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30e091d01ebb412f948cd6864e117b83 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Differential development of human brain white matter tracts.
por: Davide Imperati, et al.
Publicado: (2011) -
Eliminating accidental deviations to minimize generalization error and maximize replicability: Applications in connectomics and genomics.
por: Eric W Bridgeford, et al.
Publicado: (2021) -
Robust adaptive filtering algorithms based on (inverse)hyperbolic sine function.
por: Sihai Guan, et al.
Publicado: (2021) -
Diffusion adaptive filtering algorithm based on the Fair cost function
por: Sihai Guan, et al.
Publicado: (2021) -
Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach.
por: Maki S Koyama, et al.
Publicado: (2013)