G2-metrics arising from non-integrable special Lagrangian fibrations

We study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued func...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chihara Ryohei
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/30e6d6303ba440a2a7a6d1e3325dec1c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued functions on principal G-bundles over 3-manifolds. As applications, we describe regular parts of G2-manifolds that admit Lagrangian-type 3-dimensional group actions by constrained dynamical systems on the spaces of the triples in the cases of G = T3 and SO(3).