G2-metrics arising from non-integrable special Lagrangian fibrations
We study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued func...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30e6d6303ba440a2a7a6d1e3325dec1c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:30e6d6303ba440a2a7a6d1e3325dec1c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:30e6d6303ba440a2a7a6d1e3325dec1c2021-12-02T19:08:48ZG2-metrics arising from non-integrable special Lagrangian fibrations2300-744310.1515/coma-2019-0019https://doaj.org/article/30e6d6303ba440a2a7a6d1e3325dec1c2019-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0019https://doaj.org/toc/2300-7443We study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued functions on principal G-bundles over 3-manifolds. As applications, we describe regular parts of G2-manifolds that admit Lagrangian-type 3-dimensional group actions by constrained dynamical systems on the spaces of the triples in the cases of G = T3 and SO(3).Chihara RyoheiDe Gruyterarticleg-structuressu(3)-structuresg2-structureslagrangian fibrationseinstein metrics53c1053c2553c38MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 348-365 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
g-structures su(3)-structures g2-structures lagrangian fibrations einstein metrics 53c10 53c25 53c38 Mathematics QA1-939 |
spellingShingle |
g-structures su(3)-structures g2-structures lagrangian fibrations einstein metrics 53c10 53c25 53c38 Mathematics QA1-939 Chihara Ryohei G2-metrics arising from non-integrable special Lagrangian fibrations |
description |
We study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued functions on principal G-bundles over 3-manifolds. As applications, we describe regular parts of G2-manifolds that admit Lagrangian-type 3-dimensional group actions by constrained dynamical systems on the spaces of the triples in the cases of G = T3 and SO(3). |
format |
article |
author |
Chihara Ryohei |
author_facet |
Chihara Ryohei |
author_sort |
Chihara Ryohei |
title |
G2-metrics arising from non-integrable special Lagrangian fibrations |
title_short |
G2-metrics arising from non-integrable special Lagrangian fibrations |
title_full |
G2-metrics arising from non-integrable special Lagrangian fibrations |
title_fullStr |
G2-metrics arising from non-integrable special Lagrangian fibrations |
title_full_unstemmed |
G2-metrics arising from non-integrable special Lagrangian fibrations |
title_sort |
g2-metrics arising from non-integrable special lagrangian fibrations |
publisher |
De Gruyter |
publishDate |
2019 |
url |
https://doaj.org/article/30e6d6303ba440a2a7a6d1e3325dec1c |
work_keys_str_mv |
AT chihararyohei g2metricsarisingfromnonintegrablespeciallagrangianfibrations |
_version_ |
1718377139319865344 |