G2-metrics arising from non-integrable special Lagrangian fibrations

We study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued func...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chihara Ryohei
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/30e6d6303ba440a2a7a6d1e3325dec1c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:30e6d6303ba440a2a7a6d1e3325dec1c
record_format dspace
spelling oai:doaj.org-article:30e6d6303ba440a2a7a6d1e3325dec1c2021-12-02T19:08:48ZG2-metrics arising from non-integrable special Lagrangian fibrations2300-744310.1515/coma-2019-0019https://doaj.org/article/30e6d6303ba440a2a7a6d1e3325dec1c2019-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0019https://doaj.org/toc/2300-7443We study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued functions on principal G-bundles over 3-manifolds. As applications, we describe regular parts of G2-manifolds that admit Lagrangian-type 3-dimensional group actions by constrained dynamical systems on the spaces of the triples in the cases of G = T3 and SO(3).Chihara RyoheiDe Gruyterarticleg-structuressu(3)-structuresg2-structureslagrangian fibrationseinstein metrics53c1053c2553c38MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 348-365 (2019)
institution DOAJ
collection DOAJ
language EN
topic g-structures
su(3)-structures
g2-structures
lagrangian fibrations
einstein metrics
53c10
53c25
53c38
Mathematics
QA1-939
spellingShingle g-structures
su(3)-structures
g2-structures
lagrangian fibrations
einstein metrics
53c10
53c25
53c38
Mathematics
QA1-939
Chihara Ryohei
G2-metrics arising from non-integrable special Lagrangian fibrations
description We study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued functions on principal G-bundles over 3-manifolds. As applications, we describe regular parts of G2-manifolds that admit Lagrangian-type 3-dimensional group actions by constrained dynamical systems on the spaces of the triples in the cases of G = T3 and SO(3).
format article
author Chihara Ryohei
author_facet Chihara Ryohei
author_sort Chihara Ryohei
title G2-metrics arising from non-integrable special Lagrangian fibrations
title_short G2-metrics arising from non-integrable special Lagrangian fibrations
title_full G2-metrics arising from non-integrable special Lagrangian fibrations
title_fullStr G2-metrics arising from non-integrable special Lagrangian fibrations
title_full_unstemmed G2-metrics arising from non-integrable special Lagrangian fibrations
title_sort g2-metrics arising from non-integrable special lagrangian fibrations
publisher De Gruyter
publishDate 2019
url https://doaj.org/article/30e6d6303ba440a2a7a6d1e3325dec1c
work_keys_str_mv AT chihararyohei g2metricsarisingfromnonintegrablespeciallagrangianfibrations
_version_ 1718377139319865344