Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?

This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourse...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Erik M. Bollt, Shane D. Ross
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/30f66abf12b648debe51bb17f53fbb57
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory.