Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?

This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourse...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Erik M. Bollt, Shane D. Ross
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/30f66abf12b648debe51bb17f53fbb57
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:30f66abf12b648debe51bb17f53fbb57
record_format dspace
spelling oai:doaj.org-article:30f66abf12b648debe51bb17f53fbb572021-11-11T18:16:57ZIs the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?10.3390/math92127312227-7390https://doaj.org/article/30f66abf12b648debe51bb17f53fbb572021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2731https://doaj.org/toc/2227-7390This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory.Erik M. BolltShane D. RossMDPI AGarticleKoopman operatorspectral analysisinvariant manifoldsLyapunov exponentdynamical systemsMathematicsQA1-939ENMathematics, Vol 9, Iss 2731, p 2731 (2021)
institution DOAJ
collection DOAJ
language EN
topic Koopman operator
spectral analysis
invariant manifolds
Lyapunov exponent
dynamical systems
Mathematics
QA1-939
spellingShingle Koopman operator
spectral analysis
invariant manifolds
Lyapunov exponent
dynamical systems
Mathematics
QA1-939
Erik M. Bollt
Shane D. Ross
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
description This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory.
format article
author Erik M. Bollt
Shane D. Ross
author_facet Erik M. Bollt
Shane D. Ross
author_sort Erik M. Bollt
title Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
title_short Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
title_full Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
title_fullStr Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
title_full_unstemmed Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
title_sort is the finite-time lyapunov exponent field a koopman eigenfunction?
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/30f66abf12b648debe51bb17f53fbb57
work_keys_str_mv AT erikmbollt isthefinitetimelyapunovexponentfieldakoopmaneigenfunction
AT shanedross isthefinitetimelyapunovexponentfieldakoopmaneigenfunction
_version_ 1718431874019229696