Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourse...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30f66abf12b648debe51bb17f53fbb57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:30f66abf12b648debe51bb17f53fbb57 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:30f66abf12b648debe51bb17f53fbb572021-11-11T18:16:57ZIs the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?10.3390/math92127312227-7390https://doaj.org/article/30f66abf12b648debe51bb17f53fbb572021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2731https://doaj.org/toc/2227-7390This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory.Erik M. BolltShane D. RossMDPI AGarticleKoopman operatorspectral analysisinvariant manifoldsLyapunov exponentdynamical systemsMathematicsQA1-939ENMathematics, Vol 9, Iss 2731, p 2731 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Koopman operator spectral analysis invariant manifolds Lyapunov exponent dynamical systems Mathematics QA1-939 |
spellingShingle |
Koopman operator spectral analysis invariant manifolds Lyapunov exponent dynamical systems Mathematics QA1-939 Erik M. Bollt Shane D. Ross Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? |
description |
This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory. |
format |
article |
author |
Erik M. Bollt Shane D. Ross |
author_facet |
Erik M. Bollt Shane D. Ross |
author_sort |
Erik M. Bollt |
title |
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? |
title_short |
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? |
title_full |
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? |
title_fullStr |
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? |
title_full_unstemmed |
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? |
title_sort |
is the finite-time lyapunov exponent field a koopman eigenfunction? |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/30f66abf12b648debe51bb17f53fbb57 |
work_keys_str_mv |
AT erikmbollt isthefinitetimelyapunovexponentfieldakoopmaneigenfunction AT shanedross isthefinitetimelyapunovexponentfieldakoopmaneigenfunction |
_version_ |
1718431874019229696 |