Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourse...
Guardado en:
Autores principales: | Erik M. Bollt, Shane D. Ross |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30f66abf12b648debe51bb17f53fbb57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamical study of Lyapunov exponents for Hide’s coupled dynamo model
por: Alresheedi Teflah, et al.
Publicado: (2021) -
Randomized Projection Learning Method for Dynamic Mode Decomposition
por: Sudam Surasinghe, et al.
Publicado: (2021) -
Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator
por: Garcia-Tenorio Camilo, et al.
Publicado: (2021) -
A hybrid wavelet-Lyapunov exponent model for river water quality forecast
por: Jiping Jiang, et al.
Publicado: (2021) -
Experimentally Viable Techniques for Accessing Coexisting Attractors Correlated with Lyapunov Exponents
por: Joshua Ray Hall, et al.
Publicado: (2021)