Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourse...
Enregistré dans:
Auteurs principaux: | Erik M. Bollt, Shane D. Ross |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/30f66abf12b648debe51bb17f53fbb57 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dynamical study of Lyapunov exponents for Hide’s coupled dynamo model
par: Alresheedi Teflah, et autres
Publié: (2021) -
Randomized Projection Learning Method for Dynamic Mode Decomposition
par: Sudam Surasinghe, et autres
Publié: (2021) -
Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator
par: Garcia-Tenorio Camilo, et autres
Publié: (2021) -
A hybrid wavelet-Lyapunov exponent model for river water quality forecast
par: Jiping Jiang, et autres
Publié: (2021) -
Experimentally Viable Techniques for Accessing Coexisting Attractors Correlated with Lyapunov Exponents
par: Joshua Ray Hall, et autres
Publié: (2021)