Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
With the rapid development of detection technology, CT imaging technology has been widely used in the early clinical diagnosis of lung nodules. However, accurate assessment of the nature of the nodule remains a challenging task due to the subjective nature of the radiologist. With the increasing amo...
Guardado en:
Autores principales: | Enhui Lv, Wenfeng Liu, Pengbo Wen, Xingxing Kang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30f68bc4d4f742dc9ea359c207e69527 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application Value of a Deep Convolutional Neural Network Model for Cytological Assessment of Thyroid Nodules
por: Ying Ren, et al.
Publicado: (2021) -
Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
por: He Ma, et al.
Publicado: (2021) -
Tic Disorder of Children Analyzed and Diagnosed by Magnetic Resonance Imaging Features under Convolutional Neural Network
por: Chunxia Wu, et al.
Publicado: (2021) -
Adenocarcinoma in situ and minimally invasive adenocarcinoma in lungs of smokers: image feature differences from those in lungs of non-smokers
por: Haruto Sugawara, et al.
Publicado: (2021) -
Learning curve analysis of radiofrequency ablation for benign thyroid nodules
por: Chi-Yu Kuo, et al.
Publicado: (2021)