Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
With the rapid development of detection technology, CT imaging technology has been widely used in the early clinical diagnosis of lung nodules. However, accurate assessment of the nature of the nodule remains a challenging task due to the subjective nature of the radiologist. With the increasing amo...
Enregistré dans:
Auteurs principaux: | Enhui Lv, Wenfeng Liu, Pengbo Wen, Xingxing Kang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/30f68bc4d4f742dc9ea359c207e69527 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Application Value of a Deep Convolutional Neural Network Model for Cytological Assessment of Thyroid Nodules
par: Ying Ren, et autres
Publié: (2021) -
Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
par: He Ma, et autres
Publié: (2021) -
Tic Disorder of Children Analyzed and Diagnosed by Magnetic Resonance Imaging Features under Convolutional Neural Network
par: Chunxia Wu, et autres
Publié: (2021) -
Adenocarcinoma in situ and minimally invasive adenocarcinoma in lungs of smokers: image feature differences from those in lungs of non-smokers
par: Haruto Sugawara, et autres
Publié: (2021) -
Learning curve analysis of radiofrequency ablation for benign thyroid nodules
par: Chi-Yu Kuo, et autres
Publié: (2021)