<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras

Let <i>n</i> be a fixed natural number. Ternary Menger algebras of rank <i>n</i>, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of <i>v</i>-regular ternary Menger...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anak Nongmanee, Sorasak Leeratanavalee
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/30f78eaadc904f069b6c3423548e1e4e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Let <i>n</i> be a fixed natural number. Ternary Menger algebras of rank <i>n</i>, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of <i>v</i>-regular ternary Menger algebras of rank <i>n</i>, which can be considered as a generalization of regular ternary semigroups. Moreover, we investigate some of its interesting properties. Based on the concept of <i>n</i>-place functions (<i>n</i>-ary operations), these lead us to construct ternary Menger algebras of rank <i>n</i> of all full <i>n</i>-place functions. Finally, we study a special class of full <i>n</i>-place functions, the so-called left translations. In particular, we investigate a relationship between the concept of full <i>n</i>-place functions and left translations.