<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras
Let <i>n</i> be a fixed natural number. Ternary Menger algebras of rank <i>n</i>, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of <i>v</i>-regular ternary Menger...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30f78eaadc904f069b6c3423548e1e4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:30f78eaadc904f069b6c3423548e1e4e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:30f78eaadc904f069b6c3423548e1e4e2021-11-11T18:15:26Z<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras10.3390/math92126912227-7390https://doaj.org/article/30f78eaadc904f069b6c3423548e1e4e2021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2691https://doaj.org/toc/2227-7390Let <i>n</i> be a fixed natural number. Ternary Menger algebras of rank <i>n</i>, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of <i>v</i>-regular ternary Menger algebras of rank <i>n</i>, which can be considered as a generalization of regular ternary semigroups. Moreover, we investigate some of its interesting properties. Based on the concept of <i>n</i>-place functions (<i>n</i>-ary operations), these lead us to construct ternary Menger algebras of rank <i>n</i> of all full <i>n</i>-place functions. Finally, we study a special class of full <i>n</i>-place functions, the so-called left translations. In particular, we investigate a relationship between the concept of full <i>n</i>-place functions and left translations.Anak NongmaneeSorasak LeeratanavaleeMDPI AGarticleternary Menger algebras<i>v</i>-regular ternary Menger algebrasleft translationsMathematicsQA1-939ENMathematics, Vol 9, Iss 2691, p 2691 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ternary Menger algebras <i>v</i>-regular ternary Menger algebras left translations Mathematics QA1-939 |
spellingShingle |
ternary Menger algebras <i>v</i>-regular ternary Menger algebras left translations Mathematics QA1-939 Anak Nongmanee Sorasak Leeratanavalee <i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras |
description |
Let <i>n</i> be a fixed natural number. Ternary Menger algebras of rank <i>n</i>, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of <i>v</i>-regular ternary Menger algebras of rank <i>n</i>, which can be considered as a generalization of regular ternary semigroups. Moreover, we investigate some of its interesting properties. Based on the concept of <i>n</i>-place functions (<i>n</i>-ary operations), these lead us to construct ternary Menger algebras of rank <i>n</i> of all full <i>n</i>-place functions. Finally, we study a special class of full <i>n</i>-place functions, the so-called left translations. In particular, we investigate a relationship between the concept of full <i>n</i>-place functions and left translations. |
format |
article |
author |
Anak Nongmanee Sorasak Leeratanavalee |
author_facet |
Anak Nongmanee Sorasak Leeratanavalee |
author_sort |
Anak Nongmanee |
title |
<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras |
title_short |
<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras |
title_full |
<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras |
title_fullStr |
<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras |
title_full_unstemmed |
<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras |
title_sort |
<i>v</i>-regular ternary menger algebras and left translations of ternary menger algebras |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/30f78eaadc904f069b6c3423548e1e4e |
work_keys_str_mv |
AT anaknongmanee iviregularternarymengeralgebrasandlefttranslationsofternarymengeralgebras AT sorasakleeratanavalee iviregularternarymengeralgebrasandlefttranslationsofternarymengeralgebras |
_version_ |
1718431874212167680 |