<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras

Let <i>n</i> be a fixed natural number. Ternary Menger algebras of rank <i>n</i>, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of <i>v</i>-regular ternary Menger...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anak Nongmanee, Sorasak Leeratanavalee
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/30f78eaadc904f069b6c3423548e1e4e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:30f78eaadc904f069b6c3423548e1e4e
record_format dspace
spelling oai:doaj.org-article:30f78eaadc904f069b6c3423548e1e4e2021-11-11T18:15:26Z<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras10.3390/math92126912227-7390https://doaj.org/article/30f78eaadc904f069b6c3423548e1e4e2021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2691https://doaj.org/toc/2227-7390Let <i>n</i> be a fixed natural number. Ternary Menger algebras of rank <i>n</i>, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of <i>v</i>-regular ternary Menger algebras of rank <i>n</i>, which can be considered as a generalization of regular ternary semigroups. Moreover, we investigate some of its interesting properties. Based on the concept of <i>n</i>-place functions (<i>n</i>-ary operations), these lead us to construct ternary Menger algebras of rank <i>n</i> of all full <i>n</i>-place functions. Finally, we study a special class of full <i>n</i>-place functions, the so-called left translations. In particular, we investigate a relationship between the concept of full <i>n</i>-place functions and left translations.Anak NongmaneeSorasak LeeratanavaleeMDPI AGarticleternary Menger algebras<i>v</i>-regular ternary Menger algebrasleft translationsMathematicsQA1-939ENMathematics, Vol 9, Iss 2691, p 2691 (2021)
institution DOAJ
collection DOAJ
language EN
topic ternary Menger algebras
<i>v</i>-regular ternary Menger algebras
left translations
Mathematics
QA1-939
spellingShingle ternary Menger algebras
<i>v</i>-regular ternary Menger algebras
left translations
Mathematics
QA1-939
Anak Nongmanee
Sorasak Leeratanavalee
<i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras
description Let <i>n</i> be a fixed natural number. Ternary Menger algebras of rank <i>n</i>, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of <i>v</i>-regular ternary Menger algebras of rank <i>n</i>, which can be considered as a generalization of regular ternary semigroups. Moreover, we investigate some of its interesting properties. Based on the concept of <i>n</i>-place functions (<i>n</i>-ary operations), these lead us to construct ternary Menger algebras of rank <i>n</i> of all full <i>n</i>-place functions. Finally, we study a special class of full <i>n</i>-place functions, the so-called left translations. In particular, we investigate a relationship between the concept of full <i>n</i>-place functions and left translations.
format article
author Anak Nongmanee
Sorasak Leeratanavalee
author_facet Anak Nongmanee
Sorasak Leeratanavalee
author_sort Anak Nongmanee
title <i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras
title_short <i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras
title_full <i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras
title_fullStr <i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras
title_full_unstemmed <i>v</i>-Regular Ternary Menger Algebras and Left Translations of Ternary Menger Algebras
title_sort <i>v</i>-regular ternary menger algebras and left translations of ternary menger algebras
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/30f78eaadc904f069b6c3423548e1e4e
work_keys_str_mv AT anaknongmanee iviregularternarymengeralgebrasandlefttranslationsofternarymengeralgebras
AT sorasakleeratanavalee iviregularternarymengeralgebrasandlefttranslationsofternarymengeralgebras
_version_ 1718431874212167680