An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification

Due to the problems of traditional artificial single sand body identification methods such as strong subjectivity, heavy workload and low efficiency, we propose a fast and objective ABC-XGBoost. The algorithm consists of two parts: eXtreme gradient boosting (XGBoost) and artificial bee colony algori...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Renze Luo, Liang Guo, Xingyu Li, Juanjuan Tuo, Canru Lei, Yang Zhou
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/3101e991a6bd4b168f74f5c264897432
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3101e991a6bd4b168f74f5c264897432
record_format dspace
spelling oai:doaj.org-article:3101e991a6bd4b168f74f5c2648974322021-12-03T00:00:21ZAn eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification2169-353610.1109/ACCESS.2021.3129830https://doaj.org/article/3101e991a6bd4b168f74f5c2648974322021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9623534/https://doaj.org/toc/2169-3536Due to the problems of traditional artificial single sand body identification methods such as strong subjectivity, heavy workload and low efficiency, we propose a fast and objective ABC-XGBoost. The algorithm consists of two parts: eXtreme gradient boosting (XGBoost) and artificial bee colony algorithm (ABC). XGBoost introduces a regular term, which can effectively prevent overfitting, and uses the second derivative to make the identification result more accurate. However, a large number of parameters in XGBoost need to be adjusted manually, which affects the efficiency of the algorithm. In this regard, ABC is used to optimize the parameters based on XGBoost, and then the single sand body can be identified quickly and effectively. We take the <italic>C6</italic> <inline-formula> <tex-math notation="LaTeX">$_{1}^{2}$ </tex-math></inline-formula> oil-bearing layer in the second area of Dalugou, Jing&#x2019;an Oilfield as the research object, and use the ABC-XGBoost to identify the single sand body in the research area. Based on the reasonable selection of physical parameter data and logging data, the partition and interlayer data should be eliminated first to avoid data redundancy. The results indicate that ABC-XGBoost is more efficient and accurate than the existing mainstream machine algorithms, such as support vector machines (SVM), random forests (RF), and XGBoost using trial and error tuning under the same logging data and computer hardware conditions. The accuracy can reach 90.6&#x0025;, which has certain practical application value in the middle and late development of oil and gas fields.Renze LuoLiang GuoXingyu LiJuanjuan TuoCanru LeiYang ZhouIEEEarticleSingle sand body identificationartificial bee colony algorithmmachine learningeXtreme gradient boostingABC-XGBoostElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 156894-156906 (2021)
institution DOAJ
collection DOAJ
language EN
topic Single sand body identification
artificial bee colony algorithm
machine learning
eXtreme gradient boosting
ABC-XGBoost
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Single sand body identification
artificial bee colony algorithm
machine learning
eXtreme gradient boosting
ABC-XGBoost
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Renze Luo
Liang Guo
Xingyu Li
Juanjuan Tuo
Canru Lei
Yang Zhou
An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification
description Due to the problems of traditional artificial single sand body identification methods such as strong subjectivity, heavy workload and low efficiency, we propose a fast and objective ABC-XGBoost. The algorithm consists of two parts: eXtreme gradient boosting (XGBoost) and artificial bee colony algorithm (ABC). XGBoost introduces a regular term, which can effectively prevent overfitting, and uses the second derivative to make the identification result more accurate. However, a large number of parameters in XGBoost need to be adjusted manually, which affects the efficiency of the algorithm. In this regard, ABC is used to optimize the parameters based on XGBoost, and then the single sand body can be identified quickly and effectively. We take the <italic>C6</italic> <inline-formula> <tex-math notation="LaTeX">$_{1}^{2}$ </tex-math></inline-formula> oil-bearing layer in the second area of Dalugou, Jing&#x2019;an Oilfield as the research object, and use the ABC-XGBoost to identify the single sand body in the research area. Based on the reasonable selection of physical parameter data and logging data, the partition and interlayer data should be eliminated first to avoid data redundancy. The results indicate that ABC-XGBoost is more efficient and accurate than the existing mainstream machine algorithms, such as support vector machines (SVM), random forests (RF), and XGBoost using trial and error tuning under the same logging data and computer hardware conditions. The accuracy can reach 90.6&#x0025;, which has certain practical application value in the middle and late development of oil and gas fields.
format article
author Renze Luo
Liang Guo
Xingyu Li
Juanjuan Tuo
Canru Lei
Yang Zhou
author_facet Renze Luo
Liang Guo
Xingyu Li
Juanjuan Tuo
Canru Lei
Yang Zhou
author_sort Renze Luo
title An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification
title_short An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification
title_full An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification
title_fullStr An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification
title_full_unstemmed An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification
title_sort extreme gradient boosting algorithm combining artificial bee colony parameters optimized technique for single sand body identification
publisher IEEE
publishDate 2021
url https://doaj.org/article/3101e991a6bd4b168f74f5c264897432
work_keys_str_mv AT renzeluo anextremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT liangguo anextremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT xingyuli anextremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT juanjuantuo anextremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT canrulei anextremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT yangzhou anextremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT renzeluo extremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT liangguo extremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT xingyuli extremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT juanjuantuo extremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT canrulei extremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
AT yangzhou extremegradientboostingalgorithmcombiningartificialbeecolonyparametersoptimizedtechniqueforsinglesandbodyidentification
_version_ 1718373980906192896