An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification
Due to the problems of traditional artificial single sand body identification methods such as strong subjectivity, heavy workload and low efficiency, we propose a fast and objective ABC-XGBoost. The algorithm consists of two parts: eXtreme gradient boosting (XGBoost) and artificial bee colony algori...
Guardado en:
Autores principales: | Renze Luo, Liang Guo, Xingyu Li, Juanjuan Tuo, Canru Lei, Yang Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3101e991a6bd4b168f74f5c264897432 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient Seismic Stability Analysis of Embankment Slopes Subjected to Water Level Changes Using Gradient Boosting Algorithms
por: Luqi Wang, et al.
Publicado: (2021) -
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
por: Dariusz Majerek, et al.
Publicado: (2021) -
SeekDoc: Seeking eligible doctors from electronic health record
por: Lu Jiang, et al.
Publicado: (2021) -
iEnhancer-MFGBDT: Identifying enhancers and their strength by fusing multiple features and gradient boosting decision tree
por: Yunyun Liang, et al.
Publicado: (2021) -
Rain garden infiltration rate modeling using gradient boosting machine and deep learning techniques
por: Sandeep Kumar, et al.
Publicado: (2021)