TCM visualizes trajectories and cell populations from single cell data

Time series single cell expression data has large variance between time points and is challenging for analysis. Here, the authors develop a new dimension reduction and data visualization tool for large scale temporal scRNA-seq data which identifies trajectories and subpopulations.

Guardado en:
Detalles Bibliográficos
Autores principales: Wuming Gong, Il-Youp Kwak, Naoko Koyano-Nakagawa, Wei Pan, Daniel J. Garry
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/3107b11735c5411d8a8c981b9ffc4189
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3107b11735c5411d8a8c981b9ffc4189
record_format dspace
spelling oai:doaj.org-article:3107b11735c5411d8a8c981b9ffc41892021-12-02T15:34:39ZTCM visualizes trajectories and cell populations from single cell data10.1038/s41467-018-05112-92041-1723https://doaj.org/article/3107b11735c5411d8a8c981b9ffc41892018-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05112-9https://doaj.org/toc/2041-1723Time series single cell expression data has large variance between time points and is challenging for analysis. Here, the authors develop a new dimension reduction and data visualization tool for large scale temporal scRNA-seq data which identifies trajectories and subpopulations.Wuming GongIl-Youp KwakNaoko Koyano-NakagawaWei PanDaniel J. GarryNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Wuming Gong
Il-Youp Kwak
Naoko Koyano-Nakagawa
Wei Pan
Daniel J. Garry
TCM visualizes trajectories and cell populations from single cell data
description Time series single cell expression data has large variance between time points and is challenging for analysis. Here, the authors develop a new dimension reduction and data visualization tool for large scale temporal scRNA-seq data which identifies trajectories and subpopulations.
format article
author Wuming Gong
Il-Youp Kwak
Naoko Koyano-Nakagawa
Wei Pan
Daniel J. Garry
author_facet Wuming Gong
Il-Youp Kwak
Naoko Koyano-Nakagawa
Wei Pan
Daniel J. Garry
author_sort Wuming Gong
title TCM visualizes trajectories and cell populations from single cell data
title_short TCM visualizes trajectories and cell populations from single cell data
title_full TCM visualizes trajectories and cell populations from single cell data
title_fullStr TCM visualizes trajectories and cell populations from single cell data
title_full_unstemmed TCM visualizes trajectories and cell populations from single cell data
title_sort tcm visualizes trajectories and cell populations from single cell data
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/3107b11735c5411d8a8c981b9ffc4189
work_keys_str_mv AT wuminggong tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
AT ilyoupkwak tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
AT naokokoyanonakagawa tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
AT weipan tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
AT danieljgarry tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
_version_ 1718386772979744768