TCM visualizes trajectories and cell populations from single cell data
Time series single cell expression data has large variance between time points and is challenging for analysis. Here, the authors develop a new dimension reduction and data visualization tool for large scale temporal scRNA-seq data which identifies trajectories and subpopulations.
Enregistré dans:
Auteurs principaux: | Wuming Gong, Il-Youp Kwak, Naoko Koyano-Nakagawa, Wei Pan, Daniel J. Garry |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3107b11735c5411d8a8c981b9ffc4189 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dpath software reveals hierarchical haemato-endothelial lineages of Etv2 progenitors based on single-cell transcriptome analysis
par: Wuming Gong, et autres
Publié: (2017) -
TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations
par: Run-zhi Zhang, et autres
Publié: (2017) -
Beyond the Pharmacopoeia: To what extent is trade for “TCM” limited to official TCM taxa?
par: Tom P. Moorhouse, et autres
Publié: (2021) -
DTFLOW: Inference and Visualization of Single-cell Pseudotime Trajectory Using Diffusion Propagation
par: Jiangyong Wei, et autres
Publié: (2021) -
Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
par: Huidong Chen, et autres
Publié: (2019)