Neuromorphic computation with a single magnetic domain wall
Abstract Machine learning techniques are commonly used to model complex relationships but implementations on digital hardware are relatively inefficient due to poor matching between conventional computer architectures and the structures of the algorithms they are required to simulate. Neuromorphic d...
Guardado en:
Autores principales: | Razvan V. Ababei, Matthew O. A. Ellis, Ian T. Vidamour, Dhilan S. Devadasan, Dan A. Allwood, Eleni Vasilaki, Thomas J. Hayward |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/311665638511400082e878163f25159a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A robust model of Stimulus-Specific Adaptation validated on neuromorphic hardware
por: Natacha Vanattou-Saïfoudine, et al.
Publicado: (2021) -
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate
por: Hirofumi Tanaka, et al.
Publicado: (2018) -
Graphene memristive synapses for high precision neuromorphic computing
por: Thomas F. Schranghamer, et al.
Publicado: (2020) -
Control of criticality and computation in spiking neuromorphic networks with plasticity
por: Benjamin Cramer, et al.
Publicado: (2020)