Classification of GLM Flashes Using Random Forests
Abstract [The Geostationary Lightning Mapper (GLM) detects total lightning continuously from space, and does not distinguish intra‐cloud (IC) from cloud‐to‐ground (CG) lightning. This research focuses on differentiating CG and IC lightning detected by GLM using a random forests (RF) model. GLM flash...
Guardado en:
Autores principales: | Jacquelyn Ringhausen, Phillip Bitzer, William Koshak, John Mecikalski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/311c091b9197497ea65c02533733b067 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Moving Toward L‐Band NASA‐ISRO SAR Mission (NISAR) Dense Time Series: Multipolarization Object‐Based Classification of Wetlands Using Two Machine Learning Algorithms
por: Sarina Adeli, et al.
Publicado: (2021) -
Multi‐Order Carbon Spectral Imager: A Sensor Concept for Carbon Cycle Investigations
por: Jeffrey L. Hall, et al.
Publicado: (2019) -
The Controlling Factors of Atmospheric Formaldehyde (HCHO) in Amazon as Seen From Satellite
por: Yuxiang Zhang, et al.
Publicado: (2019) -
Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau
por: Zhiqiang Wei, et al.
Publicado: (2021) -
Intelligent Recognition of Ore‐Forming Anomalies Based on Multisource Data Fusion: A Case Study of the Daqiao Mining Area, Gansu Province, China
por: Huihui Cai, et al.
Publicado: (2021)