Prediction of lithium response using genomic data

Abstract Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: William Stone, Abraham Nunes, Kazufumi Akiyama, Nirmala Akula, Raffaella Ardau, Jean-Michel Aubry, Lena Backlund, Michael Bauer, Frank Bellivier, Pablo Cervantes, Hsi-Chung Chen, Caterina Chillotti, Cristiana Cruceanu, Alexandre Dayer, Franziska Degenhardt, Maria Del Zompo, Andreas J. Forstner, Mark Frye, Janice M. Fullerton, Maria Grigoroiu-Serbanescu, Paul Grof, Ryota Hashimoto, Liping Hou, Esther Jiménez, Tadafumi Kato, John Kelsoe, Sarah Kittel-Schneider, Po-Hsiu Kuo, Ichiro Kusumi, Catharina Lavebratt, Mirko Manchia, Lina Martinsson, Manuel Mattheisen, Francis J. McMahon, Vincent Millischer, Philip B. Mitchell, Markus M. Nöthen, Claire O’Donovan, Norio Ozaki, Claudia Pisanu, Andreas Reif, Marcella Rietschel, Guy Rouleau, Janusz Rybakowski, Martin Schalling, Peter R. Schofield, Thomas G. Schulze, Giovanni Severino, Alessio Squassina, Julia Veeh, Eduard Vieta, Thomas Trappenberg, Martin Alda
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3122c8062c9b4f39a9a4aa0e6220ae8c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3122c8062c9b4f39a9a4aa0e6220ae8c
record_format dspace
spelling oai:doaj.org-article:3122c8062c9b4f39a9a4aa0e6220ae8c2021-12-02T14:01:20ZPrediction of lithium response using genomic data10.1038/s41598-020-80814-z2045-2322https://doaj.org/article/3122c8062c9b4f39a9a4aa0e6220ae8c2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80814-zhttps://doaj.org/toc/2045-2322Abstract Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen’s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.William StoneAbraham NunesKazufumi AkiyamaNirmala AkulaRaffaella ArdauJean-Michel AubryLena BacklundMichael BauerFrank BellivierPablo CervantesHsi-Chung ChenCaterina ChillottiCristiana CruceanuAlexandre DayerFranziska DegenhardtMaria Del ZompoAndreas J. ForstnerMark FryeJanice M. FullertonMaria Grigoroiu-SerbanescuPaul GrofRyota HashimotoLiping HouEsther JiménezTadafumi KatoJohn KelsoeSarah Kittel-SchneiderPo-Hsiu KuoIchiro KusumiCatharina LavebrattMirko ManchiaLina MartinssonManuel MattheisenFrancis J. McMahonVincent MillischerPhilip B. MitchellMarkus M. NöthenClaire O’DonovanNorio OzakiClaudia PisanuAndreas ReifMarcella RietschelGuy RouleauJanusz RybakowskiMartin SchallingPeter R. SchofieldThomas G. SchulzeGiovanni SeverinoAlessio SquassinaJulia VeehEduard VietaThomas TrappenbergMartin AldaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
William Stone
Abraham Nunes
Kazufumi Akiyama
Nirmala Akula
Raffaella Ardau
Jean-Michel Aubry
Lena Backlund
Michael Bauer
Frank Bellivier
Pablo Cervantes
Hsi-Chung Chen
Caterina Chillotti
Cristiana Cruceanu
Alexandre Dayer
Franziska Degenhardt
Maria Del Zompo
Andreas J. Forstner
Mark Frye
Janice M. Fullerton
Maria Grigoroiu-Serbanescu
Paul Grof
Ryota Hashimoto
Liping Hou
Esther Jiménez
Tadafumi Kato
John Kelsoe
Sarah Kittel-Schneider
Po-Hsiu Kuo
Ichiro Kusumi
Catharina Lavebratt
Mirko Manchia
Lina Martinsson
Manuel Mattheisen
Francis J. McMahon
Vincent Millischer
Philip B. Mitchell
Markus M. Nöthen
Claire O’Donovan
Norio Ozaki
Claudia Pisanu
Andreas Reif
Marcella Rietschel
Guy Rouleau
Janusz Rybakowski
Martin Schalling
Peter R. Schofield
Thomas G. Schulze
Giovanni Severino
Alessio Squassina
Julia Veeh
Eduard Vieta
Thomas Trappenberg
Martin Alda
Prediction of lithium response using genomic data
description Abstract Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen’s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.
format article
author William Stone
Abraham Nunes
Kazufumi Akiyama
Nirmala Akula
Raffaella Ardau
Jean-Michel Aubry
Lena Backlund
Michael Bauer
Frank Bellivier
Pablo Cervantes
Hsi-Chung Chen
Caterina Chillotti
Cristiana Cruceanu
Alexandre Dayer
Franziska Degenhardt
Maria Del Zompo
Andreas J. Forstner
Mark Frye
Janice M. Fullerton
Maria Grigoroiu-Serbanescu
Paul Grof
Ryota Hashimoto
Liping Hou
Esther Jiménez
Tadafumi Kato
John Kelsoe
Sarah Kittel-Schneider
Po-Hsiu Kuo
Ichiro Kusumi
Catharina Lavebratt
Mirko Manchia
Lina Martinsson
Manuel Mattheisen
Francis J. McMahon
Vincent Millischer
Philip B. Mitchell
Markus M. Nöthen
Claire O’Donovan
Norio Ozaki
Claudia Pisanu
Andreas Reif
Marcella Rietschel
Guy Rouleau
Janusz Rybakowski
Martin Schalling
Peter R. Schofield
Thomas G. Schulze
Giovanni Severino
Alessio Squassina
Julia Veeh
Eduard Vieta
Thomas Trappenberg
Martin Alda
author_facet William Stone
Abraham Nunes
Kazufumi Akiyama
Nirmala Akula
Raffaella Ardau
Jean-Michel Aubry
Lena Backlund
Michael Bauer
Frank Bellivier
Pablo Cervantes
Hsi-Chung Chen
Caterina Chillotti
Cristiana Cruceanu
Alexandre Dayer
Franziska Degenhardt
Maria Del Zompo
Andreas J. Forstner
Mark Frye
Janice M. Fullerton
Maria Grigoroiu-Serbanescu
Paul Grof
Ryota Hashimoto
Liping Hou
Esther Jiménez
Tadafumi Kato
John Kelsoe
Sarah Kittel-Schneider
Po-Hsiu Kuo
Ichiro Kusumi
Catharina Lavebratt
Mirko Manchia
Lina Martinsson
Manuel Mattheisen
Francis J. McMahon
Vincent Millischer
Philip B. Mitchell
Markus M. Nöthen
Claire O’Donovan
Norio Ozaki
Claudia Pisanu
Andreas Reif
Marcella Rietschel
Guy Rouleau
Janusz Rybakowski
Martin Schalling
Peter R. Schofield
Thomas G. Schulze
Giovanni Severino
Alessio Squassina
Julia Veeh
Eduard Vieta
Thomas Trappenberg
Martin Alda
author_sort William Stone
title Prediction of lithium response using genomic data
title_short Prediction of lithium response using genomic data
title_full Prediction of lithium response using genomic data
title_fullStr Prediction of lithium response using genomic data
title_full_unstemmed Prediction of lithium response using genomic data
title_sort prediction of lithium response using genomic data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3122c8062c9b4f39a9a4aa0e6220ae8c
work_keys_str_mv AT williamstone predictionoflithiumresponseusinggenomicdata
AT abrahamnunes predictionoflithiumresponseusinggenomicdata
AT kazufumiakiyama predictionoflithiumresponseusinggenomicdata
AT nirmalaakula predictionoflithiumresponseusinggenomicdata
AT raffaellaardau predictionoflithiumresponseusinggenomicdata
AT jeanmichelaubry predictionoflithiumresponseusinggenomicdata
AT lenabacklund predictionoflithiumresponseusinggenomicdata
AT michaelbauer predictionoflithiumresponseusinggenomicdata
AT frankbellivier predictionoflithiumresponseusinggenomicdata
AT pablocervantes predictionoflithiumresponseusinggenomicdata
AT hsichungchen predictionoflithiumresponseusinggenomicdata
AT caterinachillotti predictionoflithiumresponseusinggenomicdata
AT cristianacruceanu predictionoflithiumresponseusinggenomicdata
AT alexandredayer predictionoflithiumresponseusinggenomicdata
AT franziskadegenhardt predictionoflithiumresponseusinggenomicdata
AT mariadelzompo predictionoflithiumresponseusinggenomicdata
AT andreasjforstner predictionoflithiumresponseusinggenomicdata
AT markfrye predictionoflithiumresponseusinggenomicdata
AT janicemfullerton predictionoflithiumresponseusinggenomicdata
AT mariagrigoroiuserbanescu predictionoflithiumresponseusinggenomicdata
AT paulgrof predictionoflithiumresponseusinggenomicdata
AT ryotahashimoto predictionoflithiumresponseusinggenomicdata
AT lipinghou predictionoflithiumresponseusinggenomicdata
AT estherjimenez predictionoflithiumresponseusinggenomicdata
AT tadafumikato predictionoflithiumresponseusinggenomicdata
AT johnkelsoe predictionoflithiumresponseusinggenomicdata
AT sarahkittelschneider predictionoflithiumresponseusinggenomicdata
AT pohsiukuo predictionoflithiumresponseusinggenomicdata
AT ichirokusumi predictionoflithiumresponseusinggenomicdata
AT catharinalavebratt predictionoflithiumresponseusinggenomicdata
AT mirkomanchia predictionoflithiumresponseusinggenomicdata
AT linamartinsson predictionoflithiumresponseusinggenomicdata
AT manuelmattheisen predictionoflithiumresponseusinggenomicdata
AT francisjmcmahon predictionoflithiumresponseusinggenomicdata
AT vincentmillischer predictionoflithiumresponseusinggenomicdata
AT philipbmitchell predictionoflithiumresponseusinggenomicdata
AT markusmnothen predictionoflithiumresponseusinggenomicdata
AT claireodonovan predictionoflithiumresponseusinggenomicdata
AT norioozaki predictionoflithiumresponseusinggenomicdata
AT claudiapisanu predictionoflithiumresponseusinggenomicdata
AT andreasreif predictionoflithiumresponseusinggenomicdata
AT marcellarietschel predictionoflithiumresponseusinggenomicdata
AT guyrouleau predictionoflithiumresponseusinggenomicdata
AT januszrybakowski predictionoflithiumresponseusinggenomicdata
AT martinschalling predictionoflithiumresponseusinggenomicdata
AT peterrschofield predictionoflithiumresponseusinggenomicdata
AT thomasgschulze predictionoflithiumresponseusinggenomicdata
AT giovanniseverino predictionoflithiumresponseusinggenomicdata
AT alessiosquassina predictionoflithiumresponseusinggenomicdata
AT juliaveeh predictionoflithiumresponseusinggenomicdata
AT eduardvieta predictionoflithiumresponseusinggenomicdata
AT thomastrappenberg predictionoflithiumresponseusinggenomicdata
AT martinalda predictionoflithiumresponseusinggenomicdata
_version_ 1718392189663313920