Prediction of lithium response using genomic data
Abstract Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3122c8062c9b4f39a9a4aa0e6220ae8c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3122c8062c9b4f39a9a4aa0e6220ae8c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3122c8062c9b4f39a9a4aa0e6220ae8c2021-12-02T14:01:20ZPrediction of lithium response using genomic data10.1038/s41598-020-80814-z2045-2322https://doaj.org/article/3122c8062c9b4f39a9a4aa0e6220ae8c2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80814-zhttps://doaj.org/toc/2045-2322Abstract Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen’s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.William StoneAbraham NunesKazufumi AkiyamaNirmala AkulaRaffaella ArdauJean-Michel AubryLena BacklundMichael BauerFrank BellivierPablo CervantesHsi-Chung ChenCaterina ChillottiCristiana CruceanuAlexandre DayerFranziska DegenhardtMaria Del ZompoAndreas J. ForstnerMark FryeJanice M. FullertonMaria Grigoroiu-SerbanescuPaul GrofRyota HashimotoLiping HouEsther JiménezTadafumi KatoJohn KelsoeSarah Kittel-SchneiderPo-Hsiu KuoIchiro KusumiCatharina LavebrattMirko ManchiaLina MartinssonManuel MattheisenFrancis J. McMahonVincent MillischerPhilip B. MitchellMarkus M. NöthenClaire O’DonovanNorio OzakiClaudia PisanuAndreas ReifMarcella RietschelGuy RouleauJanusz RybakowskiMartin SchallingPeter R. SchofieldThomas G. SchulzeGiovanni SeverinoAlessio SquassinaJulia VeehEduard VietaThomas TrappenbergMartin AldaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q William Stone Abraham Nunes Kazufumi Akiyama Nirmala Akula Raffaella Ardau Jean-Michel Aubry Lena Backlund Michael Bauer Frank Bellivier Pablo Cervantes Hsi-Chung Chen Caterina Chillotti Cristiana Cruceanu Alexandre Dayer Franziska Degenhardt Maria Del Zompo Andreas J. Forstner Mark Frye Janice M. Fullerton Maria Grigoroiu-Serbanescu Paul Grof Ryota Hashimoto Liping Hou Esther Jiménez Tadafumi Kato John Kelsoe Sarah Kittel-Schneider Po-Hsiu Kuo Ichiro Kusumi Catharina Lavebratt Mirko Manchia Lina Martinsson Manuel Mattheisen Francis J. McMahon Vincent Millischer Philip B. Mitchell Markus M. Nöthen Claire O’Donovan Norio Ozaki Claudia Pisanu Andreas Reif Marcella Rietschel Guy Rouleau Janusz Rybakowski Martin Schalling Peter R. Schofield Thomas G. Schulze Giovanni Severino Alessio Squassina Julia Veeh Eduard Vieta Thomas Trappenberg Martin Alda Prediction of lithium response using genomic data |
description |
Abstract Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen’s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures. |
format |
article |
author |
William Stone Abraham Nunes Kazufumi Akiyama Nirmala Akula Raffaella Ardau Jean-Michel Aubry Lena Backlund Michael Bauer Frank Bellivier Pablo Cervantes Hsi-Chung Chen Caterina Chillotti Cristiana Cruceanu Alexandre Dayer Franziska Degenhardt Maria Del Zompo Andreas J. Forstner Mark Frye Janice M. Fullerton Maria Grigoroiu-Serbanescu Paul Grof Ryota Hashimoto Liping Hou Esther Jiménez Tadafumi Kato John Kelsoe Sarah Kittel-Schneider Po-Hsiu Kuo Ichiro Kusumi Catharina Lavebratt Mirko Manchia Lina Martinsson Manuel Mattheisen Francis J. McMahon Vincent Millischer Philip B. Mitchell Markus M. Nöthen Claire O’Donovan Norio Ozaki Claudia Pisanu Andreas Reif Marcella Rietschel Guy Rouleau Janusz Rybakowski Martin Schalling Peter R. Schofield Thomas G. Schulze Giovanni Severino Alessio Squassina Julia Veeh Eduard Vieta Thomas Trappenberg Martin Alda |
author_facet |
William Stone Abraham Nunes Kazufumi Akiyama Nirmala Akula Raffaella Ardau Jean-Michel Aubry Lena Backlund Michael Bauer Frank Bellivier Pablo Cervantes Hsi-Chung Chen Caterina Chillotti Cristiana Cruceanu Alexandre Dayer Franziska Degenhardt Maria Del Zompo Andreas J. Forstner Mark Frye Janice M. Fullerton Maria Grigoroiu-Serbanescu Paul Grof Ryota Hashimoto Liping Hou Esther Jiménez Tadafumi Kato John Kelsoe Sarah Kittel-Schneider Po-Hsiu Kuo Ichiro Kusumi Catharina Lavebratt Mirko Manchia Lina Martinsson Manuel Mattheisen Francis J. McMahon Vincent Millischer Philip B. Mitchell Markus M. Nöthen Claire O’Donovan Norio Ozaki Claudia Pisanu Andreas Reif Marcella Rietschel Guy Rouleau Janusz Rybakowski Martin Schalling Peter R. Schofield Thomas G. Schulze Giovanni Severino Alessio Squassina Julia Veeh Eduard Vieta Thomas Trappenberg Martin Alda |
author_sort |
William Stone |
title |
Prediction of lithium response using genomic data |
title_short |
Prediction of lithium response using genomic data |
title_full |
Prediction of lithium response using genomic data |
title_fullStr |
Prediction of lithium response using genomic data |
title_full_unstemmed |
Prediction of lithium response using genomic data |
title_sort |
prediction of lithium response using genomic data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3122c8062c9b4f39a9a4aa0e6220ae8c |
work_keys_str_mv |
AT williamstone predictionoflithiumresponseusinggenomicdata AT abrahamnunes predictionoflithiumresponseusinggenomicdata AT kazufumiakiyama predictionoflithiumresponseusinggenomicdata AT nirmalaakula predictionoflithiumresponseusinggenomicdata AT raffaellaardau predictionoflithiumresponseusinggenomicdata AT jeanmichelaubry predictionoflithiumresponseusinggenomicdata AT lenabacklund predictionoflithiumresponseusinggenomicdata AT michaelbauer predictionoflithiumresponseusinggenomicdata AT frankbellivier predictionoflithiumresponseusinggenomicdata AT pablocervantes predictionoflithiumresponseusinggenomicdata AT hsichungchen predictionoflithiumresponseusinggenomicdata AT caterinachillotti predictionoflithiumresponseusinggenomicdata AT cristianacruceanu predictionoflithiumresponseusinggenomicdata AT alexandredayer predictionoflithiumresponseusinggenomicdata AT franziskadegenhardt predictionoflithiumresponseusinggenomicdata AT mariadelzompo predictionoflithiumresponseusinggenomicdata AT andreasjforstner predictionoflithiumresponseusinggenomicdata AT markfrye predictionoflithiumresponseusinggenomicdata AT janicemfullerton predictionoflithiumresponseusinggenomicdata AT mariagrigoroiuserbanescu predictionoflithiumresponseusinggenomicdata AT paulgrof predictionoflithiumresponseusinggenomicdata AT ryotahashimoto predictionoflithiumresponseusinggenomicdata AT lipinghou predictionoflithiumresponseusinggenomicdata AT estherjimenez predictionoflithiumresponseusinggenomicdata AT tadafumikato predictionoflithiumresponseusinggenomicdata AT johnkelsoe predictionoflithiumresponseusinggenomicdata AT sarahkittelschneider predictionoflithiumresponseusinggenomicdata AT pohsiukuo predictionoflithiumresponseusinggenomicdata AT ichirokusumi predictionoflithiumresponseusinggenomicdata AT catharinalavebratt predictionoflithiumresponseusinggenomicdata AT mirkomanchia predictionoflithiumresponseusinggenomicdata AT linamartinsson predictionoflithiumresponseusinggenomicdata AT manuelmattheisen predictionoflithiumresponseusinggenomicdata AT francisjmcmahon predictionoflithiumresponseusinggenomicdata AT vincentmillischer predictionoflithiumresponseusinggenomicdata AT philipbmitchell predictionoflithiumresponseusinggenomicdata AT markusmnothen predictionoflithiumresponseusinggenomicdata AT claireodonovan predictionoflithiumresponseusinggenomicdata AT norioozaki predictionoflithiumresponseusinggenomicdata AT claudiapisanu predictionoflithiumresponseusinggenomicdata AT andreasreif predictionoflithiumresponseusinggenomicdata AT marcellarietschel predictionoflithiumresponseusinggenomicdata AT guyrouleau predictionoflithiumresponseusinggenomicdata AT januszrybakowski predictionoflithiumresponseusinggenomicdata AT martinschalling predictionoflithiumresponseusinggenomicdata AT peterrschofield predictionoflithiumresponseusinggenomicdata AT thomasgschulze predictionoflithiumresponseusinggenomicdata AT giovanniseverino predictionoflithiumresponseusinggenomicdata AT alessiosquassina predictionoflithiumresponseusinggenomicdata AT juliaveeh predictionoflithiumresponseusinggenomicdata AT eduardvieta predictionoflithiumresponseusinggenomicdata AT thomastrappenberg predictionoflithiumresponseusinggenomicdata AT martinalda predictionoflithiumresponseusinggenomicdata |
_version_ |
1718392189663313920 |