An atomic carbon source for high temperature molecular beam epitaxy of graphene

Abstract We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. D. Albar, A. Summerfield, T. S. Cheng, A. Davies, E. F. Smith, A. N. Khlobystov, C. J. Mellor, T. Taniguchi, K. Watanabe, C. T. Foxon, L. Eaves, P. H. Beton, S. V. Novikov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3129cbf984284527ac9876d7d8fbcca0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3129cbf984284527ac9876d7d8fbcca0
record_format dspace
spelling oai:doaj.org-article:3129cbf984284527ac9876d7d8fbcca02021-12-02T15:05:59ZAn atomic carbon source for high temperature molecular beam epitaxy of graphene10.1038/s41598-017-07021-12045-2322https://doaj.org/article/3129cbf984284527ac9876d7d8fbcca02017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07021-1https://doaj.org/toc/2045-2322Abstract We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.J. D. AlbarA. SummerfieldT. S. ChengA. DaviesE. F. SmithA. N. KhlobystovC. J. MellorT. TaniguchiK. WatanabeC. T. FoxonL. EavesP. H. BetonS. V. NovikovNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
J. D. Albar
A. Summerfield
T. S. Cheng
A. Davies
E. F. Smith
A. N. Khlobystov
C. J. Mellor
T. Taniguchi
K. Watanabe
C. T. Foxon
L. Eaves
P. H. Beton
S. V. Novikov
An atomic carbon source for high temperature molecular beam epitaxy of graphene
description Abstract We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.
format article
author J. D. Albar
A. Summerfield
T. S. Cheng
A. Davies
E. F. Smith
A. N. Khlobystov
C. J. Mellor
T. Taniguchi
K. Watanabe
C. T. Foxon
L. Eaves
P. H. Beton
S. V. Novikov
author_facet J. D. Albar
A. Summerfield
T. S. Cheng
A. Davies
E. F. Smith
A. N. Khlobystov
C. J. Mellor
T. Taniguchi
K. Watanabe
C. T. Foxon
L. Eaves
P. H. Beton
S. V. Novikov
author_sort J. D. Albar
title An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_short An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_full An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_fullStr An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_full_unstemmed An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_sort atomic carbon source for high temperature molecular beam epitaxy of graphene
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/3129cbf984284527ac9876d7d8fbcca0
work_keys_str_mv AT jdalbar anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT asummerfield anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT tscheng anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT adavies anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT efsmith anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT ankhlobystov anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT cjmellor anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT ttaniguchi anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT kwatanabe anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT ctfoxon anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT leaves anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT phbeton anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT svnovikov anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT jdalbar atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT asummerfield atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT tscheng atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT adavies atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT efsmith atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT ankhlobystov atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT cjmellor atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT ttaniguchi atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT kwatanabe atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT ctfoxon atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT leaves atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT phbeton atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT svnovikov atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
_version_ 1718388635137474560