Elevated 5hmC levels characterize DNA of the cerebellum in Parkinson’s disease
Abstract 5-methylcytosine and the oxidation product 5-hydroxymethylcytosine are two prominent epigenetic variants of the cytosine base in nuclear DNA of mammalian brains. We measured levels of 5-methylcytosine and 5-hydroxymethylcytosine by enzyme-linked immunosorbent assay in DNA from post-mortem c...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/313bead6c40041298b4aafaba6c38a62 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract 5-methylcytosine and the oxidation product 5-hydroxymethylcytosine are two prominent epigenetic variants of the cytosine base in nuclear DNA of mammalian brains. We measured levels of 5-methylcytosine and 5-hydroxymethylcytosine by enzyme-linked immunosorbent assay in DNA from post-mortem cerebella of individuals with Parkinson’s disease and age-matched controls. 5-methylcytosine levels showed no significant differences between Parkinson’s disease and control DNA sample sets. In contrast, median 5-hydroxymethylcytosine levels were almost twice as high (p < 0.001) in both male and female Parkinson’s disease individuals compared with controls. The distinct epigenetic profile identified in cerebellar DNA of Parkinson’s disease patients raises the question whether elevated 5-hydroxymethylcytosine levels are a driver or a consequence of Parkinson’s disease. |
---|