cGMP-dependent protein kinase Iβ interacts with p44/WDR77 to regulate androgen receptor-driven gene expression.

The androgen receptor (AR) pathway plays critical roles in controlling differentiation and proliferation of prostate epithelial cells. We previously identified a novel AR cofactor, p44/WDR77, which specifically enhances AR transcriptional activity in the prostate gland and prostate cancer. To furthe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liran Zhou, Keiko Hosohata, Shen Gao, Zhongping Gu, Zhengxin Wang
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3152a455291f40349327b011ee1da05f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The androgen receptor (AR) pathway plays critical roles in controlling differentiation and proliferation of prostate epithelial cells. We previously identified a novel AR cofactor, p44/WDR77, which specifically enhances AR transcriptional activity in the prostate gland and prostate cancer. To further elucidate p44/WDR77's role in the AR signaling pathway, we conducted a yeast two-hybrid screening and identified cGMP-dependent protein kinase (PKG) as a p44/WDR77-interacting protein. Further investigation by lusiferase assay and kinase assay demonstrated that PKG-Iβ physically interacted with and phosphorylated both p44 and AR and enhanced AR transactivity in synergy with p44 in an androgen- and cGMP-dependent manner. Furthermore, PKG1β expression promoted p44/WDR77 nuclear translocation and inhibited prostate cancer cell growth via G1 cell cycle arrest. Our findings characterize PKG as a novel regulator of AR-mediated transcription by enhancing AR cofactor p44/WDR77's function, which provide a novel mechanism for the growth regulation of prostate cancer cells by the androgen signaling.