Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}

Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jianwei Huang, Sheng Li, Chiho Yoon, Ji Seop Oh, Han Wu, Xiaoyuan Liu, Nikhil Dhale, Yan-Feng Zhou, Yucheng Guo, Yichen Zhang, Makoto Hashimoto, Donghui Lu, Jonathan Denlinger, Xiqu Wang, Chun Ning Lau, Robert J. Birgeneau, Fan Zhang, Bing Lv, Ming Yi
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/315ca3c4771f465586b525196c1a4fbe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:315ca3c4771f465586b525196c1a4fbe
record_format dspace
spelling oai:doaj.org-article:315ca3c4771f465586b525196c1a4fbe2021-12-02T17:09:48ZRoom-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}10.1103/PhysRevX.11.0310422160-3308https://doaj.org/article/315ca3c4771f465586b525196c1a4fbe2021-08-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.031042http://doi.org/10.1103/PhysRevX.11.031042https://doaj.org/toc/2160-3308Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi_{4}I_{4}, mediated via a first-order structural transition between two distinct stacking orders of the weakly coupled chains. Using high-resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high-temperature β phase to be the first weak topological insulator with two gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low-temperature α phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics.Jianwei HuangSheng LiChiho YoonJi Seop OhHan WuXiaoyuan LiuNikhil DhaleYan-Feng ZhouYucheng GuoYichen ZhangMakoto HashimotoDonghui LuJonathan DenlingerXiqu WangChun Ning LauRobert J. BirgeneauFan ZhangBing LvMing YiAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 3, p 031042 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Jianwei Huang
Sheng Li
Chiho Yoon
Ji Seop Oh
Han Wu
Xiaoyuan Liu
Nikhil Dhale
Yan-Feng Zhou
Yucheng Guo
Yichen Zhang
Makoto Hashimoto
Donghui Lu
Jonathan Denlinger
Xiqu Wang
Chun Ning Lau
Robert J. Birgeneau
Fan Zhang
Bing Lv
Ming Yi
Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}
description Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi_{4}I_{4}, mediated via a first-order structural transition between two distinct stacking orders of the weakly coupled chains. Using high-resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high-temperature β phase to be the first weak topological insulator with two gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low-temperature α phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics.
format article
author Jianwei Huang
Sheng Li
Chiho Yoon
Ji Seop Oh
Han Wu
Xiaoyuan Liu
Nikhil Dhale
Yan-Feng Zhou
Yucheng Guo
Yichen Zhang
Makoto Hashimoto
Donghui Lu
Jonathan Denlinger
Xiqu Wang
Chun Ning Lau
Robert J. Birgeneau
Fan Zhang
Bing Lv
Ming Yi
author_facet Jianwei Huang
Sheng Li
Chiho Yoon
Ji Seop Oh
Han Wu
Xiaoyuan Liu
Nikhil Dhale
Yan-Feng Zhou
Yucheng Guo
Yichen Zhang
Makoto Hashimoto
Donghui Lu
Jonathan Denlinger
Xiqu Wang
Chun Ning Lau
Robert J. Birgeneau
Fan Zhang
Bing Lv
Ming Yi
author_sort Jianwei Huang
title Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}
title_short Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}
title_full Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}
title_fullStr Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}
title_full_unstemmed Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}
title_sort room-temperature topological phase transition in quasi-one-dimensional material bi_{4}i_{4}
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/315ca3c4771f465586b525196c1a4fbe
work_keys_str_mv AT jianweihuang roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT shengli roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT chihoyoon roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT jiseopoh roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT hanwu roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT xiaoyuanliu roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT nikhildhale roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT yanfengzhou roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT yuchengguo roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT yichenzhang roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT makotohashimoto roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT donghuilu roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT jonathandenlinger roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT xiquwang roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT chunninglau roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT robertjbirgeneau roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT fanzhang roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT binglv roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
AT mingyi roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4
_version_ 1718381489683431424