Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}
Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations s...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/315ca3c4771f465586b525196c1a4fbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:315ca3c4771f465586b525196c1a4fbe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:315ca3c4771f465586b525196c1a4fbe2021-12-02T17:09:48ZRoom-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4}10.1103/PhysRevX.11.0310422160-3308https://doaj.org/article/315ca3c4771f465586b525196c1a4fbe2021-08-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.031042http://doi.org/10.1103/PhysRevX.11.031042https://doaj.org/toc/2160-3308Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi_{4}I_{4}, mediated via a first-order structural transition between two distinct stacking orders of the weakly coupled chains. Using high-resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high-temperature β phase to be the first weak topological insulator with two gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low-temperature α phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics.Jianwei HuangSheng LiChiho YoonJi Seop OhHan WuXiaoyuan LiuNikhil DhaleYan-Feng ZhouYucheng GuoYichen ZhangMakoto HashimotoDonghui LuJonathan DenlingerXiqu WangChun Ning LauRobert J. BirgeneauFan ZhangBing LvMing YiAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 3, p 031042 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Jianwei Huang Sheng Li Chiho Yoon Ji Seop Oh Han Wu Xiaoyuan Liu Nikhil Dhale Yan-Feng Zhou Yucheng Guo Yichen Zhang Makoto Hashimoto Donghui Lu Jonathan Denlinger Xiqu Wang Chun Ning Lau Robert J. Birgeneau Fan Zhang Bing Lv Ming Yi Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4} |
description |
Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi_{4}I_{4}, mediated via a first-order structural transition between two distinct stacking orders of the weakly coupled chains. Using high-resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high-temperature β phase to be the first weak topological insulator with two gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low-temperature α phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics. |
format |
article |
author |
Jianwei Huang Sheng Li Chiho Yoon Ji Seop Oh Han Wu Xiaoyuan Liu Nikhil Dhale Yan-Feng Zhou Yucheng Guo Yichen Zhang Makoto Hashimoto Donghui Lu Jonathan Denlinger Xiqu Wang Chun Ning Lau Robert J. Birgeneau Fan Zhang Bing Lv Ming Yi |
author_facet |
Jianwei Huang Sheng Li Chiho Yoon Ji Seop Oh Han Wu Xiaoyuan Liu Nikhil Dhale Yan-Feng Zhou Yucheng Guo Yichen Zhang Makoto Hashimoto Donghui Lu Jonathan Denlinger Xiqu Wang Chun Ning Lau Robert J. Birgeneau Fan Zhang Bing Lv Ming Yi |
author_sort |
Jianwei Huang |
title |
Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4} |
title_short |
Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4} |
title_full |
Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4} |
title_fullStr |
Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4} |
title_full_unstemmed |
Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi_{4}I_{4} |
title_sort |
room-temperature topological phase transition in quasi-one-dimensional material bi_{4}i_{4} |
publisher |
American Physical Society |
publishDate |
2021 |
url |
https://doaj.org/article/315ca3c4771f465586b525196c1a4fbe |
work_keys_str_mv |
AT jianweihuang roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT shengli roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT chihoyoon roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT jiseopoh roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT hanwu roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT xiaoyuanliu roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT nikhildhale roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT yanfengzhou roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT yuchengguo roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT yichenzhang roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT makotohashimoto roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT donghuilu roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT jonathandenlinger roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT xiquwang roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT chunninglau roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT robertjbirgeneau roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT fanzhang roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT binglv roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 AT mingyi roomtemperaturetopologicalphasetransitioninquasionedimensionalmaterialbi4i4 |
_version_ |
1718381489683431424 |