Machine learning for chemical discovery
Discovering chemicals with desired attributes is a long and painstaking process. Curated datasets containing reliable quantum-mechanical properties for millions of molecules are becoming increasingly available. The development of novel machine learning tools to obtain chemical knowledge from these d...
Guardado en:
Autor principal: | Alexandre Tkatchenko |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/316c9b03a1074f64b5fbab43c739f1f8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Retrospective on a decade of machine learning for chemical discovery
por: O. Anatole von Lilienfeld, et al.
Publicado: (2020) -
Machine learning guided aptamer refinement and discovery
por: Ali Bashir, et al.
Publicado: (2021) -
Towards exact molecular dynamics simulations with machine-learned force fields
por: Stefan Chmiela, et al.
Publicado: (2018) -
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020) -
Discovery of food identity markers by metabolomics and machine learning technology
por: Alexander Erban, et al.
Publicado: (2019)