Efficient Generation of Artificial Training DB for Ship Detection Using Satellite SAR Images
In this article, we propose an effective scheme to generate an artificial training database (DB) to mitigate the deficiency in the amount of training DB for ship detection using satellite synthetic aperture radar (SAR) images. In the proposed scheme, SAR signatures of ship targets are first obtained...
Guardado en:
Autores principales: | Seung-Jae Lee, Kwang-Jae Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/318a29962db044c38e41e68128fccc69 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improved Accuracy of Velocity Estimation for Cruising Ships by Temporal Differences Between Two Extreme Sublook Images of ALOS-2 Spotlight SAR Images With Long Integration Times
por: Takero Yoshida, et al.
Publicado: (2021) -
A Two-Scale Method of Sea Ice Classification Using TerraSAR-X ScanSAR Data During Early Freeze-Up
por: Huiying Liu, et al.
Publicado: (2021) -
Anchor-Free SAR Ship Instance Segmentation With Centroid-Distance Based Loss
por: Fei Gao, et al.
Publicado: (2021) -
China's Gaofen-3 Satellite System and Its Application and Prospect
por: Liangbo Zhao, et al.
Publicado: (2021) -
Towards Operational Flood Monitoring in Flanders Using Sentinel-1
por: Lisa Landuyt, et al.
Publicado: (2021)