Efficient Generation of Artificial Training DB for Ship Detection Using Satellite SAR Images
In this article, we propose an effective scheme to generate an artificial training database (DB) to mitigate the deficiency in the amount of training DB for ship detection using satellite synthetic aperture radar (SAR) images. In the proposed scheme, SAR signatures of ship targets are first obtained...
Enregistré dans:
Auteurs principaux: | Seung-Jae Lee, Kwang-Jae Lee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/318a29962db044c38e41e68128fccc69 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Improved Accuracy of Velocity Estimation for Cruising Ships by Temporal Differences Between Two Extreme Sublook Images of ALOS-2 Spotlight SAR Images With Long Integration Times
par: Takero Yoshida, et autres
Publié: (2021) -
A Two-Scale Method of Sea Ice Classification Using TerraSAR-X ScanSAR Data During Early Freeze-Up
par: Huiying Liu, et autres
Publié: (2021) -
Anchor-Free SAR Ship Instance Segmentation With Centroid-Distance Based Loss
par: Fei Gao, et autres
Publié: (2021) -
China's Gaofen-3 Satellite System and Its Application and Prospect
par: Liangbo Zhao, et autres
Publié: (2021) -
Towards Operational Flood Monitoring in Flanders Using Sentinel-1
par: Lisa Landuyt, et autres
Publié: (2021)