A mixture of delta-rules approximation to bayesian inference in change-point problems.
Error-driven learning rules have received considerable attention because of their close relationships to both optimal theory and neurobiological mechanisms. However, basic forms of these rules are effective under only a restricted set of conditions in which the environment is stable. Recent studies...
Guardado en:
Autores principales: | Robert C Wilson, Matthew R Nassar, Joshua I Gold |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/319536d444224beeac36e201a42ed281 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Approximate Bayesian computation.
por: Mikael Sunnåker, et al.
Publicado: (2013) -
Multi-scale inference of interaction rules in animal groups using Bayesian model selection.
por: Richard P Mann, et al.
Publicado: (2012) -
Bayesian phylodynamic inference with complex models.
por: Erik M Volz, et al.
Publicado: (2018) -
Bayesian inference of population prevalence
por: Robin AA Ince, et al.
Publicado: (2021) -
Cortical hierarchies perform Bayesian causal inference in multisensory perception.
por: Tim Rohe, et al.
Publicado: (2015)