Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab
Synthetic platforms coupled with artificial intelligent algorithms are highly desirable for advancing the discovery of new materials with target properties. Here the authors demonstrate the use of an autonomous laboratory for the discovery of optically active CsPbBr3 inorganic perovskite nanocrystal...
Saved in:
Main Authors: | Jiagen Li, Junzi Li, Rulin Liu, Yuxiao Tu, Yiwen Li, Jiaji Cheng, Tingchao He, Xi Zhu |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2020
|
Subjects: | |
Online Access: | https://doaj.org/article/31b09a34f0db4c1c96c02c1f6c3f7a4e |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals
by: Matthew S. Kirschner, et al.
Published: (2019) -
Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals
by: Huichao Zhang, et al.
Published: (2019) -
Coherent vibrational dynamics reveals lattice anharmonicity in organic–inorganic halide perovskite nanocrystals
by: Tushar Debnath, et al.
Published: (2021) -
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
by: Shuaihua Lu, et al.
Published: (2018) -
Spatially Ordered Arrays of Colloidal Inorganic Metal Halide Perovskite Nanocrystals via Controlled Droplet Evaporation in a Confined Geometry
by: Kwan Lee, et al.
Published: (2021)