Automatic Unsupervised Fabric Defect Detection Based on Self-Feature Comparison
Due to the huge demand for textile production in China, fabric defect detection is particularly attractive. At present, an increasing number of supervised deep-learning methods are being applied in surface defect detection. However, the annotation of datasets in industrial settings often depends on...
Guardado en:
Autores principales: | Zhengrui Peng, Xinyi Gong, Bengang Wei, Xiangyi Xu, Shixiong Meng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/31b7c9e6f72c4afaab16d01da69f689b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning
por: Ivan Kuric, et al.
Publicado: (2021) -
Blind Image Super Resolution Using Deep Unsupervised Learning
por: Kazuhiro Yamawaki, et al.
Publicado: (2021) -
Deep Convolutional Neural Network Optimization for Defect Detection in Fabric Inspection
por: Chao-Ching Ho, et al.
Publicado: (2021) -
Multi-Task Learning with Task-Specific Feature Filtering in Low-Data Condition
por: Sang-woo Lee, et al.
Publicado: (2021) -
Drain Structural Defect Detection and Mapping Using AI-Enabled Reconfigurable Robot Raptor and IoRT Framework
por: Povendhan Palanisamy, et al.
Publicado: (2021)