Computational medication regimen for Parkinson’s disease using reinforcement learning
Abstract Our objective is to derive a sequential decision-making rule on the combination of medications to minimize motor symptoms using reinforcement learning (RL). Using an observational longitudinal cohort of Parkinson’s disease patients, the Parkinson’s Progression Markers Initiative database, w...
Guardado en:
Autores principales: | Yejin Kim, Jessika Suescun, Mya C. Schiess, Xiaoqian Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/31c5e5c270414017a3711587b00d9e9a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
- Current Medical Literature: Parkinson's Disease
-
Neurophysiological Predictors of Response to Medication in Parkinson's Disease
por: Saša R. Filipović, et al.
Publicado: (2021) -
Mobile computer technologies in personified therapy of Parkinson’s disease patients
por: Y. N. Bykov, et al.
Publicado: (2018) -
Author Correction: Computer keyboard interaction as an indicator of early Parkinson’s disease
por: L. Giancardo, et al.
Publicado: (2018) -
Deep learning-enabled medical computer vision
por: Andre Esteva, et al.
Publicado: (2021)