Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19
Abstract Chest radiography (CXR) is the most widely-used thoracic clinical imaging modality and is crucial for guiding the management of cardiothoracic conditions. The detection of specific CXR findings has been the main focus of several artificial intelligence (AI) systems. However, the wide range...
Guardado en:
Autores principales: | Zaid Nabulsi, Andrew Sellergren, Shahar Jamshy, Charles Lau, Edward Santos, Atilla P. Kiraly, Wenxing Ye, Jie Yang, Rory Pilgrim, Sahar Kazemzadeh, Jin Yu, Sreenivasa Raju Kalidindi, Mozziyar Etemadi, Florencia Garcia-Vicente, David Melnick, Greg S. Corrado, Lily Peng, Krish Eswaran, Daniel Tse, Neeral Beladia, Yun Liu, Po-Hsuan Cameron Chen, Shravya Shetty |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/31c65be9be1043d9a386af4cf67b5c5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Entropy of radiation: the unseen side of light
por: Alfonso Delgado-Bonal
Publicado: (2017) -
Ravens attribute visual access to unseen competitors
por: Thomas Bugnyar, et al.
Publicado: (2016) -
Leveraging the Cell Ontology to classify unseen cell types
por: Sheng Wang, et al.
Publicado: (2021) -
Protected area networks do not represent unseen biodiversity
por: Ángel Delso, et al.
Publicado: (2021) -
William A. Gleason, Sites Unseen. Architecture, Race and American Literature
por: Michel Imbert
Publicado: (2015)