Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19
Abstract Chest radiography (CXR) is the most widely-used thoracic clinical imaging modality and is crucial for guiding the management of cardiothoracic conditions. The detection of specific CXR findings has been the main focus of several artificial intelligence (AI) systems. However, the wide range...
Enregistré dans:
Auteurs principaux: | Zaid Nabulsi, Andrew Sellergren, Shahar Jamshy, Charles Lau, Edward Santos, Atilla P. Kiraly, Wenxing Ye, Jie Yang, Rory Pilgrim, Sahar Kazemzadeh, Jin Yu, Sreenivasa Raju Kalidindi, Mozziyar Etemadi, Florencia Garcia-Vicente, David Melnick, Greg S. Corrado, Lily Peng, Krish Eswaran, Daniel Tse, Neeral Beladia, Yun Liu, Po-Hsuan Cameron Chen, Shravya Shetty |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/31c65be9be1043d9a386af4cf67b5c5c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Entropy of radiation: the unseen side of light
par: Alfonso Delgado-Bonal
Publié: (2017) -
Ravens attribute visual access to unseen competitors
par: Thomas Bugnyar, et autres
Publié: (2016) -
Leveraging the Cell Ontology to classify unseen cell types
par: Sheng Wang, et autres
Publié: (2021) -
Protected area networks do not represent unseen biodiversity
par: Ángel Delso, et autres
Publié: (2021) -
William A. Gleason, Sites Unseen. Architecture, Race and American Literature
par: Michel Imbert
Publié: (2015)