Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the Lq-norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of “positive bumps” of the degenerate te...
Guardado en:
Autores principales: | Candito Pasquale, Gasiński Leszek, Livrea Roberto, Santos Júnior João R. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/31d8852dcbfc4f6fb51c1294a2ec92a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
por: Wang Jun
Publicado: (2021) -
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
por: Han Qi
Publicado: (2021) -
Approximate nonradial solutions for the Lane-Emden problem in the ball
por: Fazekas Borbála, et al.
Publicado: (2021) -
Sobolev regularity solutions for a class of singular quasilinear ODEs
por: Zhao Xiaofeng, et al.
Publicado: (2021) -
Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
por: Manouni Said El, et al.
Publicado: (2021)