Weakly Supervised Video Anomaly Detection Based on 3D Convolution and LSTM
Weakly supervised video anomaly detection is a recent focus of computer vision research thanks to the availability of large-scale weakly supervised video datasets. However, most existing research works are limited to the frame-level classification with emphasis on finding the presence of specific ob...
Guardado en:
Autores principales: | Zhen Ma, José J. M. Machado, João Manuel R. S. Tavares |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/31e1f7c399464ec2869fff31068995ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder
por: Imene Mitiche, et al.
Publicado: (2021) -
Study on Reconstruction and Feature Tracking of Silicone Heart 3D Surface
por: Ziyan Zhang, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Three-dimensional versus two-dimensional video-assisted hepatectomy for liver disease: a meta-analysis of clinical data
por: Shumao Zhang, et al.
Publicado: (2020) -
Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets
por: Tajanpure Rupali, et al.
Publicado: (2021)