Synthesis and Activation Study of Iron (Fe) Based Fischer Tropsch (FT) Catalyst Using Sol-gel Method
As oil consumption increases from year to year, efforts need to be made to increase energy reserves by developing new renewable energy. One way to develop energy sources is by the synthesis Fischer Tropsch (FT). FT is a synthetic gas conversion reaction (mixture of CO and H2) into a long chain hydro...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
University of Brawijaya
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/31ebf72c0ab8437bb324b269594a59c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:31ebf72c0ab8437bb324b269594a59c4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:31ebf72c0ab8437bb324b269594a59c42021-12-02T14:38:20ZSynthesis and Activation Study of Iron (Fe) Based Fischer Tropsch (FT) Catalyst Using Sol-gel Method2302-46902302-4690https://doaj.org/article/31ebf72c0ab8437bb324b269594a59c42019-12-01T00:00:00Zhttps://jpacr.ub.ac.id/index.php/jpacr/article/view/480/pdfhttps://doaj.org/toc/2302-4690https://doaj.org/toc/2302-4690As oil consumption increases from year to year, efforts need to be made to increase energy reserves by developing new renewable energy. One way to develop energy sources is by the synthesis Fischer Tropsch (FT). FT is a synthetic gas conversion reaction (mixture of CO and H2) into a long chain hydrocarbon mixture. The FT reaction requires a catalyst called the FT catalyst. So far, many studies that examine the effectiveness of catalysts in converting synthesis gas into long chain hydrocarbons, but rarely information about the composition of the phases that exist on the surface of the catalyst. To study about it, we synthesized FT catalysts at various variations of calcination temperature. Fe(NO3)3 as a precursor and Cu(NO3)2 as promoter (20:1) used in this study. The calcination temperature used are 300, 500, and 700°C. Characterization and analysis of catalysts were formed with XRD and SEM-EDX. Calcined catalysts were activated using CO2 and H2 gas and then re-characterized with XRD and SEM-EDX. Calcination results the formation of an iron oxide phase, while activation results the formation of iron carbide and zero Fe phases.Muchammad Zainul AnwarRachmat Triandi TjahjantoUswatun HasanahUniversity of Brawijayaarticlefischer tropsch catalystsol-gelcalcinationactivationChemistryQD1-999ENJournal of Pure and Applied Chemistry Research, Vol 8, Iss 3, Pp 217-224 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fischer tropsch catalyst sol-gel calcination activation Chemistry QD1-999 |
spellingShingle |
fischer tropsch catalyst sol-gel calcination activation Chemistry QD1-999 Muchammad Zainul Anwar Rachmat Triandi Tjahjanto Uswatun Hasanah Synthesis and Activation Study of Iron (Fe) Based Fischer Tropsch (FT) Catalyst Using Sol-gel Method |
description |
As oil consumption increases from year to year, efforts need to be made to increase energy reserves by developing new renewable energy. One way to develop energy sources is by the synthesis Fischer Tropsch (FT). FT is a synthetic gas conversion reaction (mixture of CO and H2) into a long chain hydrocarbon mixture. The FT reaction requires a catalyst called the FT catalyst. So far, many studies that examine the effectiveness of catalysts in converting synthesis gas into long chain hydrocarbons, but rarely information about the composition of the phases that exist on the surface of the catalyst. To study about it, we synthesized FT catalysts at various variations of calcination temperature. Fe(NO3)3 as a precursor and Cu(NO3)2 as promoter (20:1) used in this study. The calcination temperature used are 300, 500, and 700°C. Characterization and analysis of catalysts were formed with XRD and SEM-EDX. Calcined catalysts were activated using CO2 and H2 gas and then re-characterized with XRD and SEM-EDX. Calcination results the formation of an iron oxide phase, while activation results the formation of iron carbide and zero Fe phases. |
format |
article |
author |
Muchammad Zainul Anwar Rachmat Triandi Tjahjanto Uswatun Hasanah |
author_facet |
Muchammad Zainul Anwar Rachmat Triandi Tjahjanto Uswatun Hasanah |
author_sort |
Muchammad Zainul Anwar |
title |
Synthesis and Activation Study of Iron (Fe) Based Fischer Tropsch (FT) Catalyst Using Sol-gel Method |
title_short |
Synthesis and Activation Study of Iron (Fe) Based Fischer Tropsch (FT) Catalyst Using Sol-gel Method |
title_full |
Synthesis and Activation Study of Iron (Fe) Based Fischer Tropsch (FT) Catalyst Using Sol-gel Method |
title_fullStr |
Synthesis and Activation Study of Iron (Fe) Based Fischer Tropsch (FT) Catalyst Using Sol-gel Method |
title_full_unstemmed |
Synthesis and Activation Study of Iron (Fe) Based Fischer Tropsch (FT) Catalyst Using Sol-gel Method |
title_sort |
synthesis and activation study of iron (fe) based fischer tropsch (ft) catalyst using sol-gel method |
publisher |
University of Brawijaya |
publishDate |
2019 |
url |
https://doaj.org/article/31ebf72c0ab8437bb324b269594a59c4 |
work_keys_str_mv |
AT muchammadzainulanwar synthesisandactivationstudyofironfebasedfischertropschftcatalystusingsolgelmethod AT rachmattrianditjahjanto synthesisandactivationstudyofironfebasedfischertropschftcatalystusingsolgelmethod AT uswatunhasanah synthesisandactivationstudyofironfebasedfischertropschftcatalystusingsolgelmethod |
_version_ |
1718390942460805120 |