Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification

Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being C...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giuseppe Pezzotti, Miyuki Kobara, Tenma Asai, Tamaki Nakaya, Nao Miyamoto, Tetsuya Adachi, Toshiro Yamamoto, Narisato Kanamura, Eriko Ohgitani, Elia Marin, Wenliang Zhu, Ichiro Nishimura, Osam Mazda, Tetsuo Nakata, Koichi Makimura
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/31f168ccdaa0442497712b183394fe63
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:31f168ccdaa0442497712b183394fe63
record_format dspace
spelling oai:doaj.org-article:31f168ccdaa0442497712b183394fe632021-11-12T06:48:10ZRaman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification1664-302X10.3389/fmicb.2021.769597https://doaj.org/article/31f168ccdaa0442497712b183394fe632021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmicb.2021.769597/fullhttps://doaj.org/toc/1664-302XInvasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment.Giuseppe PezzottiGiuseppe PezzottiGiuseppe PezzottiGiuseppe PezzottiGiuseppe PezzottiMiyuki KobaraTenma AsaiTenma AsaiTamaki NakayaTamaki NakayaNao MiyamotoTetsuya AdachiToshiro YamamotoNarisato KanamuraEriko OhgitaniElia MarinElia MarinWenliang ZhuIchiro NishimuraOsam MazdaTetsuo NakataKoichi MakimuraFrontiers Media S.A.articleRaman imagingRaman spectroscopyCandida aurismachine-learningglucansergosterolMicrobiologyQR1-502ENFrontiers in Microbiology, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Raman imaging
Raman spectroscopy
Candida auris
machine-learning
glucans
ergosterol
Microbiology
QR1-502
spellingShingle Raman imaging
Raman spectroscopy
Candida auris
machine-learning
glucans
ergosterol
Microbiology
QR1-502
Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Miyuki Kobara
Tenma Asai
Tenma Asai
Tamaki Nakaya
Tamaki Nakaya
Nao Miyamoto
Tetsuya Adachi
Toshiro Yamamoto
Narisato Kanamura
Eriko Ohgitani
Elia Marin
Elia Marin
Wenliang Zhu
Ichiro Nishimura
Osam Mazda
Tetsuo Nakata
Koichi Makimura
Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
description Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment.
format article
author Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Miyuki Kobara
Tenma Asai
Tenma Asai
Tamaki Nakaya
Tamaki Nakaya
Nao Miyamoto
Tetsuya Adachi
Toshiro Yamamoto
Narisato Kanamura
Eriko Ohgitani
Elia Marin
Elia Marin
Wenliang Zhu
Ichiro Nishimura
Osam Mazda
Tetsuo Nakata
Koichi Makimura
author_facet Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Giuseppe Pezzotti
Miyuki Kobara
Tenma Asai
Tenma Asai
Tamaki Nakaya
Tamaki Nakaya
Nao Miyamoto
Tetsuya Adachi
Toshiro Yamamoto
Narisato Kanamura
Eriko Ohgitani
Elia Marin
Elia Marin
Wenliang Zhu
Ichiro Nishimura
Osam Mazda
Tetsuo Nakata
Koichi Makimura
author_sort Giuseppe Pezzotti
title Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_short Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_full Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_fullStr Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_full_unstemmed Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_sort raman imaging of pathogenic candida auris: visualization of structural characteristics and machine-learning identification
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/31f168ccdaa0442497712b183394fe63
work_keys_str_mv AT giuseppepezzotti ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT giuseppepezzotti ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT giuseppepezzotti ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT giuseppepezzotti ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT giuseppepezzotti ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT miyukikobara ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT tenmaasai ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT tenmaasai ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT tamakinakaya ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT tamakinakaya ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT naomiyamoto ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT tetsuyaadachi ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT toshiroyamamoto ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT narisatokanamura ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT erikoohgitani ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT eliamarin ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT eliamarin ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT wenliangzhu ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT ichironishimura ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT osammazda ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT tetsuonakata ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT koichimakimura ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
_version_ 1718431098390708224