A Distributed Biased Boundary Attack Method in Black-Box Attack
The adversarial samples threaten the effectiveness of machine learning (ML) models and algorithms in many applications. In particular, black-box attack methods are quite close to actual scenarios. Research on black-box attack methods and the generation of adversarial samples is helpful to discover t...
Guardado en:
Autores principales: | Fengtao Xiang, Jiahui Xu, Wanpeng Zhang, Weidong Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/31fcb370a0354069ae9989ccb021af4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021) -
Textual Adversarial Attacking with Limited Queries
por: Yu Zhang, et al.
Publicado: (2021) -
Search-and-Attack: Temporally Sparse Adversarial Perturbations on Videos
por: Hwan Heo, et al.
Publicado: (2021) -
Multi-Targeted Adversarial Example in Evasion Attack on Deep Neural Network
por: Hyun Kwon, et al.
Publicado: (2018) -
Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
por: Tommaso Zoppi, et al.
Publicado: (2021)