A Two-Stage Differential Evolution Algorithm with Mutation Strategy Combination
For most of differential evolution (DE) algorithm variants, premature convergence is still challenging. The main reason is that the exploration and exploitation are highly coupled in the existing works. To address this problem, we present a novel DE variant that can symmetrically decouple exploratio...
Guardado en:
Autores principales: | Xingping Sun, Da Wang, Hongwei Kang, Yong Shen, Qingyi Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/321664fbab174b6ea1bee917e28972ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive Differential Evolution With Information Entropy-Based Mutation Strategy
por: Liujing Wang, et al.
Publicado: (2021) -
Genome-Wide Mutation Rate Response to pH Change in the Coral Reef Pathogen <italic toggle="yes">Vibrio shilonii</italic> AK1
por: Chloe Strauss, et al.
Publicado: (2017) -
Differential Evolution Based Algorithm for Optimal Current Ripple Cancelation in an Unequal Interleaved Power Converter
por: Julio C. Rosas-Caro, et al.
Publicado: (2021) -
Comparison of Machine Learning Classifiers for Reducing Fitness Evaluations of Structural Optimization
por: Tran-Hieu Nguyen, et al.
Publicado: (2021) -
Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure
por: Rosanna C. T. Wright, et al.
Publicado: (2019)