Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall

Extreme rain events can cause social and economic impacts in various sectors. Knowing the risk of occurrences of extreme events is fundamental for the establishment of mitigation measures and for risk management. The analysis of frequencies of historical series of observed rain through theoretical p...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Álvaro José Back, Fernanda Martins Bonfante
Format: article
Langue:EN
Publié: Associação Brasileira de Engenharia Sanitária e Ambiental 2021
Sujets:
Accès en ligne:https://doaj.org/article/32229f1ac6d249bcbb89c47f8ba88a1f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Extreme rain events can cause social and economic impacts in various sectors. Knowing the risk of occurrences of extreme events is fundamental for the establishment of mitigation measures and for risk management. The analysis of frequencies of historical series of observed rain through theoretical probability distributions is the most commonly used method. The generalized extreme value (GEV) and Gumbel probability distributions stand out among those applied to estimate the maximum daily rainfall. The indication of the best distribution depends on characteristics of the data series used to adjust parameters and criteria used for selection. This study compares GEV and Gumbel distributions and analyzes different criteria used to select the best distribution. We used 224 series of annual maximums of rainfall stations in Santa Catarina (Brazil), with sizes between 12 and 90 years and asymmetry coefficient ranging from -0.277 to 3.917. We used the Anderson–Darling, Kolmogorov-Smirnov (KS), and Filliben adhesion tests. For an indication of the best distribution, we used the standard error of estimate, Akaike’s criterion, and the ranking with adhesion tests. KS test proved to be less rigorous and only rejected 0.25% of distributions tested, while Anderson–Darling and Filliben tests rejected 9.06% and 8.8% of distributions, respectively. GEV distribution proved to be the most indicated for most stations. High agreement (73.7%) was only found in the indication of the best distribution between Filliben tests and the standard error of estimate.