Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall

Extreme rain events can cause social and economic impacts in various sectors. Knowing the risk of occurrences of extreme events is fundamental for the establishment of mitigation measures and for risk management. The analysis of frequencies of historical series of observed rain through theoretical p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Álvaro José Back, Fernanda Martins Bonfante
Formato: article
Lenguaje:EN
Publicado: Associação Brasileira de Engenharia Sanitária e Ambiental 2021
Materias:
Acceso en línea:https://doaj.org/article/32229f1ac6d249bcbb89c47f8ba88a1f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:32229f1ac6d249bcbb89c47f8ba88a1f
record_format dspace
spelling oai:doaj.org-article:32229f1ac6d249bcbb89c47f8ba88a1f2021-11-19T01:33:19ZEvaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall1808-45242176-947810.5327/Z217694781015https://doaj.org/article/32229f1ac6d249bcbb89c47f8ba88a1f2021-09-01T00:00:00Zhttp://rbciamb.com.br/index.php/Publicacoes_RBCIAMB/article/view/1015https://doaj.org/toc/1808-4524https://doaj.org/toc/2176-9478Extreme rain events can cause social and economic impacts in various sectors. Knowing the risk of occurrences of extreme events is fundamental for the establishment of mitigation measures and for risk management. The analysis of frequencies of historical series of observed rain through theoretical probability distributions is the most commonly used method. The generalized extreme value (GEV) and Gumbel probability distributions stand out among those applied to estimate the maximum daily rainfall. The indication of the best distribution depends on characteristics of the data series used to adjust parameters and criteria used for selection. This study compares GEV and Gumbel distributions and analyzes different criteria used to select the best distribution. We used 224 series of annual maximums of rainfall stations in Santa Catarina (Brazil), with sizes between 12 and 90 years and asymmetry coefficient ranging from -0.277 to 3.917. We used the Anderson–Darling, Kolmogorov-Smirnov (KS), and Filliben adhesion tests. For an indication of the best distribution, we used the standard error of estimate, Akaike’s criterion, and the ranking with adhesion tests. KS test proved to be less rigorous and only rejected 0.25% of distributions tested, while Anderson–Darling and Filliben tests rejected 9.06% and 8.8% of distributions, respectively. GEV distribution proved to be the most indicated for most stations. High agreement (73.7%) was only found in the indication of the best distribution between Filliben tests and the standard error of estimate.Álvaro José BackFernanda Martins BonfanteAssociação Brasileira de Engenharia Sanitária e Ambientalarticleheavy raindrainageprobabilityterritorial managementEnvironmental sciencesGE1-350ENRevista Brasileira de Ciências Ambientais, Vol 56, Iss 4, Pp 654-664 (2021)
institution DOAJ
collection DOAJ
language EN
topic heavy rain
drainage
probability
territorial management
Environmental sciences
GE1-350
spellingShingle heavy rain
drainage
probability
territorial management
Environmental sciences
GE1-350
Álvaro José Back
Fernanda Martins Bonfante
Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall
description Extreme rain events can cause social and economic impacts in various sectors. Knowing the risk of occurrences of extreme events is fundamental for the establishment of mitigation measures and for risk management. The analysis of frequencies of historical series of observed rain through theoretical probability distributions is the most commonly used method. The generalized extreme value (GEV) and Gumbel probability distributions stand out among those applied to estimate the maximum daily rainfall. The indication of the best distribution depends on characteristics of the data series used to adjust parameters and criteria used for selection. This study compares GEV and Gumbel distributions and analyzes different criteria used to select the best distribution. We used 224 series of annual maximums of rainfall stations in Santa Catarina (Brazil), with sizes between 12 and 90 years and asymmetry coefficient ranging from -0.277 to 3.917. We used the Anderson–Darling, Kolmogorov-Smirnov (KS), and Filliben adhesion tests. For an indication of the best distribution, we used the standard error of estimate, Akaike’s criterion, and the ranking with adhesion tests. KS test proved to be less rigorous and only rejected 0.25% of distributions tested, while Anderson–Darling and Filliben tests rejected 9.06% and 8.8% of distributions, respectively. GEV distribution proved to be the most indicated for most stations. High agreement (73.7%) was only found in the indication of the best distribution between Filliben tests and the standard error of estimate.
format article
author Álvaro José Back
Fernanda Martins Bonfante
author_facet Álvaro José Back
Fernanda Martins Bonfante
author_sort Álvaro José Back
title Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall
title_short Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall
title_full Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall
title_fullStr Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall
title_full_unstemmed Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall
title_sort evaluation of generalized extreme value and gumbel distributions for estimating maximum daily rainfall
publisher Associação Brasileira de Engenharia Sanitária e Ambiental
publishDate 2021
url https://doaj.org/article/32229f1ac6d249bcbb89c47f8ba88a1f
work_keys_str_mv AT alvarojoseback evaluationofgeneralizedextremevalueandgumbeldistributionsforestimatingmaximumdailyrainfall
AT fernandamartinsbonfante evaluationofgeneralizedextremevalueandgumbeldistributionsforestimatingmaximumdailyrainfall
_version_ 1718420601253658624