Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
This paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H∈1/2,1. On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonl...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/323ca4bd9c8746a49818d0c29e9500ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:323ca4bd9c8746a49818d0c29e9500ac |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:323ca4bd9c8746a49818d0c29e9500ac2021-11-08T02:35:25ZNumerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions1607-887X10.1155/2021/4934658https://doaj.org/article/323ca4bd9c8746a49818d0c29e9500ac2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/4934658https://doaj.org/toc/1607-887XThis paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H∈1/2,1. On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonlinear stochastic integral equation is converted into a nonlinear algebraic equation by this method. Furthermore, error analysis is given by the pathwise approach. Finally, two numerical examples exhibit the validity and accuracy of the approach.Mengting DengGuo JiangTing KeHindawi LimitedarticleMathematicsQA1-939ENDiscrete Dynamics in Nature and Society, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mathematics QA1-939 |
spellingShingle |
Mathematics QA1-939 Mengting Deng Guo Jiang Ting Ke Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions |
description |
This paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H∈1/2,1. On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonlinear stochastic integral equation is converted into a nonlinear algebraic equation by this method. Furthermore, error analysis is given by the pathwise approach. Finally, two numerical examples exhibit the validity and accuracy of the approach. |
format |
article |
author |
Mengting Deng Guo Jiang Ting Ke |
author_facet |
Mengting Deng Guo Jiang Ting Ke |
author_sort |
Mengting Deng |
title |
Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions |
title_short |
Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions |
title_full |
Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions |
title_fullStr |
Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions |
title_full_unstemmed |
Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions |
title_sort |
numerical solution of nonlinear stochastic itô–volterra integral equations driven by fractional brownian motion using block pulse functions |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/323ca4bd9c8746a49818d0c29e9500ac |
work_keys_str_mv |
AT mengtingdeng numericalsolutionofnonlinearstochasticitovolterraintegralequationsdrivenbyfractionalbrownianmotionusingblockpulsefunctions AT guojiang numericalsolutionofnonlinearstochasticitovolterraintegralequationsdrivenbyfractionalbrownianmotionusingblockpulsefunctions AT tingke numericalsolutionofnonlinearstochasticitovolterraintegralequationsdrivenbyfractionalbrownianmotionusingblockpulsefunctions |
_version_ |
1718443172005150720 |