Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions

This paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H∈1/2,1. On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mengting Deng, Guo Jiang, Ting Ke
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/323ca4bd9c8746a49818d0c29e9500ac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:323ca4bd9c8746a49818d0c29e9500ac
record_format dspace
spelling oai:doaj.org-article:323ca4bd9c8746a49818d0c29e9500ac2021-11-08T02:35:25ZNumerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions1607-887X10.1155/2021/4934658https://doaj.org/article/323ca4bd9c8746a49818d0c29e9500ac2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/4934658https://doaj.org/toc/1607-887XThis paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H∈1/2,1. On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonlinear stochastic integral equation is converted into a nonlinear algebraic equation by this method. Furthermore, error analysis is given by the pathwise approach. Finally, two numerical examples exhibit the validity and accuracy of the approach.Mengting DengGuo JiangTing KeHindawi LimitedarticleMathematicsQA1-939ENDiscrete Dynamics in Nature and Society, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Mengting Deng
Guo Jiang
Ting Ke
Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
description This paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H∈1/2,1. On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonlinear stochastic integral equation is converted into a nonlinear algebraic equation by this method. Furthermore, error analysis is given by the pathwise approach. Finally, two numerical examples exhibit the validity and accuracy of the approach.
format article
author Mengting Deng
Guo Jiang
Ting Ke
author_facet Mengting Deng
Guo Jiang
Ting Ke
author_sort Mengting Deng
title Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
title_short Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
title_full Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
title_fullStr Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
title_full_unstemmed Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
title_sort numerical solution of nonlinear stochastic itô–volterra integral equations driven by fractional brownian motion using block pulse functions
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/323ca4bd9c8746a49818d0c29e9500ac
work_keys_str_mv AT mengtingdeng numericalsolutionofnonlinearstochasticitovolterraintegralequationsdrivenbyfractionalbrownianmotionusingblockpulsefunctions
AT guojiang numericalsolutionofnonlinearstochasticitovolterraintegralequationsdrivenbyfractionalbrownianmotionusingblockpulsefunctions
AT tingke numericalsolutionofnonlinearstochasticitovolterraintegralequationsdrivenbyfractionalbrownianmotionusingblockpulsefunctions
_version_ 1718443172005150720