Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
This paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H∈1/2,1. On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonl...
Saved in:
Main Authors: | Mengting Deng, Guo Jiang, Ting Ke |
---|---|
Format: | article |
Language: | EN |
Published: |
Hindawi Limited
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/323ca4bd9c8746a49818d0c29e9500ac |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Almost Periodic Solutions to Impulsive Stochastic Delay Differential Equations Driven by Fractional Brownian Motion With 12 < H < 1
by: Lili Gao, et al.
Published: (2021) -
Optimal control of stochastic system with Fractional Brownian Motion
by: Chaofeng Zhao, et al.
Published: (2021) -
Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space
by: Fatima Youbi, et al.
Published: (2022) -
Existence Solution for Nonlinear System of Fractional Integrodifferential Equations of Volterra Type with Fractional Boundary Conditions
by: Faraj Y. Ishak
Published: (2020) -
Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion
by: Vasile Brătian, et al.
Published: (2021)