Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test

Spatial organization of the genome plays a crucial role in regulating gene expression. Here the authors introduce GMAP, the Gaussian Mixture model And Proportion test, to identify topologically associating domains and subdomains in Hi-C data.

Guardado en:
Detalles Bibliográficos
Autores principales: Wenbao Yu, Bing He, Kai Tan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/324439f719804898a27e1bc7c4641b2d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:324439f719804898a27e1bc7c4641b2d
record_format dspace
spelling oai:doaj.org-article:324439f719804898a27e1bc7c4641b2d2021-12-02T14:42:37ZIdentifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test10.1038/s41467-017-00478-82041-1723https://doaj.org/article/324439f719804898a27e1bc7c4641b2d2017-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-00478-8https://doaj.org/toc/2041-1723Spatial organization of the genome plays a crucial role in regulating gene expression. Here the authors introduce GMAP, the Gaussian Mixture model And Proportion test, to identify topologically associating domains and subdomains in Hi-C data.Wenbao YuBing HeKai TanNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Wenbao Yu
Bing He
Kai Tan
Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test
description Spatial organization of the genome plays a crucial role in regulating gene expression. Here the authors introduce GMAP, the Gaussian Mixture model And Proportion test, to identify topologically associating domains and subdomains in Hi-C data.
format article
author Wenbao Yu
Bing He
Kai Tan
author_facet Wenbao Yu
Bing He
Kai Tan
author_sort Wenbao Yu
title Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test
title_short Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test
title_full Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test
title_fullStr Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test
title_full_unstemmed Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test
title_sort identifying topologically associating domains and subdomains by gaussian mixture model and proportion test
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/324439f719804898a27e1bc7c4641b2d
work_keys_str_mv AT wenbaoyu identifyingtopologicallyassociatingdomainsandsubdomainsbygaussianmixturemodelandproportiontest
AT binghe identifyingtopologicallyassociatingdomainsandsubdomainsbygaussianmixturemodelandproportiontest
AT kaitan identifyingtopologicallyassociatingdomainsandsubdomainsbygaussianmixturemodelandproportiontest
_version_ 1718389621600026624